zbMATH — the first resource for mathematics

ADHM construction of perverse instanton sheaves. (English) Zbl 1316.14024
The paper under review studies framed torsion free instanton sheaves on projective varieties. An instanton sheaf on \(\mathbb{P}^{n}\) (\(n\geq 2\)) is given by a torsion free sheaf \(E\) which is the cohomology of a linear monad \[ \mathcal{O}_{\mathbb{P}^{n}}(-1)^{\oplus c}\rightarrow \mathcal{O}_{\mathbb{P}^{n}}^{\oplus a}\rightarrow \mathcal{O}_{\mathbb{P}^{n}}(-1)^{\oplus c}\; , \] where we call \(c\) its charge and its rank is given by \(r=2c-a\). A sheaf \(E\) on a projective space is called of trivial splitting type if there exists an isomorphism \(\phi:E|_{l}\rightarrow \mathcal{O}_{l}^{\oplus r}\) for some line \(l\subset \mathbb{P}^{n}\) and, then, the pair \((E,\phi)\) is a framed sheaf. These definitions can be extended to a projective scheme \(\mathbb{Y}\subset \mathbb{P}^{n}\) which contains a line, and the condition of the composition of the arrows in the monad being zero turns out to be the so called ADHM equation between certain matrices.
These matrices are called an ADHM data, and after introducing an stability condition on them the authors show a correspondence (cf. Theorem 3.8) between isomorphism classes of rank \(r\) and charge \(c\) framed torsion free instanton sheaves on \(\mathbb{Y}\) and the so called globally weak stable ADHM data, which allows to construct a quasi projective moduli space of these instantons as the GIT quotient of the stable data. Theorem 4.2. particularizes this result for \(\mathbb{Y}=\mathbb{P}^{n}\) and proves that the moduli space is fine.
Section 5 is devoted to generalize the theory from torsion free sheaves to perverse sheaves, which can be seen as complexes of sheaves which are in the heart of some particular \(t\)-structure in the derived category, not necessarily the standard one. Theorem 5.9 relates the category of perverse instanton sheaves with the ADHM data. Finally, Theorem 5.13 generalizes this for \(\mathbb{Y}=\mathbb{P}^{n}\) to give a hypercohomological characterization of perverse instanton sheaves, generalizing the known one for torsion free instanton sheaves.

14D20 Algebraic moduli problems, moduli of vector bundles
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
14J60 Vector bundles on surfaces and higher-dimensional varieties, and their moduli
Full Text: DOI arXiv
[1] Newstead, Lectures on introduction to moduli problems and orbit spaces (1978) · Zbl 0411.14003
[2] Okonek, J. Reine Agnew. Math. 364 pp 35– (1986)
[3] Mumford, Ergebnisse der Mathematik und ihrer Grenzgebiete (1965)
[4] DOI: 10.1088/0951-7715/1/4/002 · Zbl 0681.53037 · doi:10.1088/0951-7715/1/4/002
[5] DOI: 10.1007/BF01421207 · Zbl 0405.14008 · doi:10.1007/BF01421207
[6] Kashiwara, Moscow Math. J. 4 pp 847– (2004)
[7] Happel, Mem. Am. Math. Soc. 120 (1996)
[8] Grifiths, Principles of algebraic geometry (1979)
[9] DOI: 10.1112/S0024610704005952 · Zbl 1095.14012 · doi:10.1112/S0024610704005952
[10] Godement, Topologie algébrique et théorie des faisceaux (1958)
[11] DOI: 10.1090/S0002-9947-02-03126-4 · Zbl 1031.14004 · doi:10.1090/S0002-9947-02-03126-4
[12] DOI: 10.1002/mana.200610730 · Zbl 1161.14011 · doi:10.1002/mana.200610730
[13] DOI: 10.1016/j.jalgebra.2008.01.016 · Zbl 1145.14017 · doi:10.1016/j.jalgebra.2008.01.016
[14] DOI: 10.1142/S0129167X03001624 · Zbl 1059.14018 · doi:10.1142/S0129167X03001624
[15] DOI: 10.1080/00927870008827171 · doi:10.1080/00927870008827171
[16] DOI: 10.1007/0-8176-4467-9_2 · doi:10.1007/0-8176-4467-9_2
[17] DOI: 10.1007/BF01212289 · Zbl 0581.14008 · doi:10.1007/BF01212289
[18] DOI: 10.1112/S0010437X0800359X · Zbl 1171.14001 · doi:10.1112/S0010437X0800359X
[19] DOI: 10.1007/BF01168047 · Zbl 0395.14007 · doi:10.1007/BF01168047
[20] DOI: 10.1016/0375-9601(78)90141-X · Zbl 0424.14004 · doi:10.1016/0375-9601(78)90141-X
[21] Ancona, Trans. Am. Math. Soc. 341 pp 677– (1994)
[22] DOI: 10.1016/j.geomphys.2011.06.003 · Zbl 1229.14010 · doi:10.1016/j.geomphys.2011.06.003
[23] DOI: 10.1080/00927871003757584 · Zbl 1211.14049 · doi:10.1080/00927871003757584
[24] DOI: 10.1016/j.crma.2008.02.014 · Zbl 1143.14036 · doi:10.1016/j.crma.2008.02.014
[25] Jardim, Collec. Math. 57 pp 69– (2006)
[26] DOI: 10.1007/978-1-4419-8566-8 · doi:10.1007/978-1-4419-8566-8
[27] DOI: 10.1142/S0129167X14500086 · Zbl 1330.14016 · doi:10.1142/S0129167X14500086
[28] Hartshorne, Residues and duality (1966) · Zbl 0212.26101 · doi:10.1007/BFb0080482
[29] Hartshorne, Algebraic geometry pp 52– · Zbl 0367.14001
[30] DOI: 10.1017/S0017089510000558 · Zbl 1238.14010 · doi:10.1017/S0017089510000558
[31] DOI: 10.1007/BF01453589 · Zbl 0752.14014 · doi:10.1007/BF01453589
[32] Okonek, Vector bundles on complex projective spaces (1980) · Zbl 0438.32016
[33] DOI: 10.1090/ulect/018 · doi:10.1090/ulect/018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.