×

zbMATH — the first resource for mathematics

The flux of noncommutative U(1) instanton through the fuzzy spheres. (English) Zbl 1113.81102

MSC:
81T16 Nonperturbative methods of renormalization applied to problems in quantum field theory
81T75 Noncommutative geometry methods in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Connes A., Noncommutative Geometry (1994)
[2] Madore J., London Math. Soc. Lect. Note Ser. 257, in: An Introduction Noncommutative Differential Geometry and its Physical Application (2000)
[3] DOI: 10.1007/978-1-4612-0005-5 · doi:10.1007/978-1-4612-0005-5
[4] DOI: 10.1007/BF02083810 · Zbl 0846.58015 · doi:10.1007/BF02083810
[5] DOI: 10.1007/BF02104515 · Zbl 0847.53051 · doi:10.1007/BF02104515
[6] DOI: 10.1103/PhysRevD.55.5112 · doi:10.1103/PhysRevD.55.5112
[7] Connes A., J. High Energy Phys. 9802 pp 003–
[8] Anatoly K., Phys. Rep. 360 pp 353–
[9] DOI: 10.1063/1.530758 · Zbl 0824.46086 · doi:10.1063/1.530758
[10] Schomerus V., J. High Energy Phys. 9906 pp 030–
[11] Seiberg N., J. High Energy Phys. 9909 pp 032–
[12] DOI: 10.1007/s002200050490 · Zbl 0923.58062 · doi:10.1007/s002200050490
[13] DOI: 10.1143/PTPS.144.79 · doi:10.1143/PTPS.144.79
[14] DOI: 10.1143/PTP.103.1043 · doi:10.1143/PTP.103.1043
[15] DOI: 10.1007/PL00005554 · Zbl 1012.81049 · doi:10.1007/PL00005554
[16] Furuuchi K., J. High Energy Phys. 0103 pp 033–
[17] DOI: 10.1007/s00220-003-0911-8 · Zbl 1160.81428 · doi:10.1007/s00220-003-0911-8
[18] Sako A., J. High Energy Phys. 0304 pp 023–
[19] DOI: 10.1103/PhysRevD.66.025025 · doi:10.1103/PhysRevD.66.025025
[20] DOI: 10.1016/0375-9601(78)90141-X · Zbl 0424.14004 · doi:10.1016/0375-9601(78)90141-X
[21] DOI: 10.1016/0003-4916(84)90145-3 · Zbl 0535.58025 · doi:10.1016/0003-4916(84)90145-3
[22] Rajaraman R., Solitons and Instantons (1982)
[23] DOI: 10.1016/S0550-3213(00)00743-4 · Zbl 1097.81537 · doi:10.1016/S0550-3213(00)00743-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.