×

A poroelastic fluid-structure interaction model of syringomyelia. (English) Zbl 1383.76565

Summary: Syringomyelia is a medical condition in which one or more fluid-filled cavities (syrinxes) form in the spinal cord. The syrinxes often form near locations where the spinal subarachnoid space (SSS; the fluid-filled annular region surrounding the spinal cord) is partially obstructed. Previous studies showed that nonlinear interactions between the pulsatile fluid flow in the SSS and the elastic deformation of the tissues surrounding it can generate a fluid pressure distribution that would tend to drive fluid from the SSS into the syrinx if the tissue separating the two regions was porous. This provides a potential explanation for why a partial occlusion of the SSS can induce the growth of an already existing nearby syrinx. We study this hypothesis by analysing the mass transfer between the SSS and the syrinx, using a poroelastic fluid-structure interaction model of the spinal cord that includes a representation of the partially obstructed SSS, the syrinx and the poroelastic tissues surrounding these fluid-filled cavities. Our numerical simulations show that poroelastic fluid-structure interaction can indeed cause an increase (albeit relatively small) in syrinx volume. We analyse the seepage flows and show that their structure can be captured by an analytical model which explains why the increase in syrinx volume tends to be relatively small.

MSC:

76Z05 Physiological flows
76F10 Shear flows and turbulence
76S05 Flows in porous media; filtration; seepage
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Amestoy, P. R.; Duff, I. S.; Koster, J.; L’Excellent, J.-Y., A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Applics., 23, 1, 15-41, (2001) · Zbl 0992.65018 · doi:10.1137/S0895479899358194
[2] Badia, S.; Quaini, A.; Quarteroni, A., Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction, J. Comput. Phys., 228, 21, 7986-8014, (2009) · Zbl 1391.74234 · doi:10.1016/j.jcp.2009.07.019
[3] Beavers, G. S.; Joseph, D. D., Boundary conditions at a naturally permeable wall, J. Fluid Mech., 30, 197-207, (1967) · doi:10.1017/S0022112067001375
[4] Berkouk, K. K.; Carpenter, P. W.; Lucey, A. D., Pressure wave propagation in fluid-filled co-axial elastic tubes. Part 1: basic theory, Trans. ASME J. Biomech. Engng, 125, 852-856, (2003) · doi:10.1115/1.1634280
[5] Bertram, C. D., A numerical investigation of waves propagating in the spinal cord and subarachnoid space in the presence of a syrinx, J. Fluids Struct., 25, 1189-1205, (2009) · doi:10.1016/j.jfluidstructs.2009.06.008
[6] Bertram, C. D., Evaluation by fluid/structure-interaction spinal-cord simulation of the effects of subarachnoid-space stenosis on an adjacent syrinx, Trans. ASME J. Biomech. Engng, 132, 1-15, (2010) · doi:10.1115/1.4001165
[7] Bertram, C. D.; Brodbelt, A. R.; Stoodley, M. A., The origins of syringomyelia: numerical models of fluid/structure interactions in the spinal cord, Trans. ASME J. Biomech. Engng, 127, 1099-1109, (2005) · doi:10.1115/1.2073607
[8] Bertram, C. D.; Heil, M., A poroelastic fluid/structure-interaction model of cerebrospinal fluid dynamics in the cord with syringomyelia and adjacent subarachnoid-space stenosis, Trans. ASME J. Biomech. Engng, 139, (2016) · doi:10.1115/1.4034657
[9] Bunck, A. C.; Kroger, J.-R.; Juttner, A.; Brentrup, A.; Fiedler, B.; Schaarschmidt, F.; Crelier, G. R.; Schwindt, W.; Heindel, W.; Niederstadt, T.; Maintz, D., Magnetic resonance 4D flow characteristics of cerebrospinal fluid at the craniocervical junction and the cervical spinal canal, Eur. Radiol., 21, 1788-1796, (2011) · doi:10.1007/s00330-011-2105-7
[10] Carpenter, P. W.; Berkouk, K. K.; Lucey, A. D., Pressure wave propagation in fluid-filled co-axial elastic tubes part 2: Mechanisms for the pathogenesis of syringomyelia, Trans. ASME J. Biomech. Engng, 125, 857-863, (2003) · doi:10.1115/1.1634281
[11] Carraro, T.; Goll, C.; Marciniak-Czochra, A.; Mikelic, A., Pressure jump interface law for the Stokes-Darcy coupling: confirmation by direct numerical simulations, J. Fluid Mech., 732, 510-536, (2013) · Zbl 1294.76233 · doi:10.1017/jfm.2013.416
[12] Chang, G. L.; Hung, T. K.; Feng, W. W., An in-vivo measurement and analysis of viscoelastic properties of the spinal cord of cats, Trans. ASME J. Biomech. Engng, 110, 115-122, (1988) · doi:10.1115/1.3108415
[13] Cirovic, S., A coaxial tube model of the cerebrospinal fluid pulse propagation in the spinal column, Trans. ASME J. Biomech. Engng, 131, (2009)
[14] Cirovic, S.; Kim, M., A one-dimensional model of the spinal cerebrospinal-fluid compartment, Trans. ASME J. Biomech. Engng, 134, (2012) · doi:10.1115/1.4005853
[15] Cowin, S. C., Bone poroelasticity, J. Biomech., 32, 3, 217-238, (1999) · doi:10.1016/S0021-9290(98)00161-4
[16] Detournay, E. & Cheng, A.H.-D.1993Fundamentals of poroelasticity. In Comprehensive Rock Engineering: Principles, Practice and Projects, Vol. II, Analysis and Design Method (ed. Fairhurst, C.), pp. 113-171. Pergamon Press.
[17] Dreha-Kulaczewski, S.; Joseph, A. A.; Merboldt, K.-D.; Ludwig, H.-C.; Gärtner, J.; Frahm, J., Inspiration is the major regulator of human CSF flow, J. Neurosci., 35, 6, 2485-2491, (2015) · doi:10.1523/JNEUROSCI.3246-14.2015
[18] Elliott, N. J., Syrinx fluid transport: Modeling pressure-wave-induced flux across the spinal pial membrane, Trans. ASME J. Biomech. Engng, 134, (2012) · doi:10.1115/1.4005849
[19] Elliott, N. S. J.; Bertram, C. D.; Martin, B. A.; Brodbelt, A. R., Syringomyelia: a review of the biomechanics, J. Fluids Struct., 40, 1-24, (2013) · doi:10.1016/j.jfluidstructs.2013.01.010
[20] Elliott, N. S. J.; Lockerby, D. A.; Brodbelt, A. R., The pathogenesis of syringomyelia: a re-evaluation of the elastic-jump hypothesis, Trans. ASME J. Biomech. Engng, 131, (2009) · doi:10.1115/1.3072894
[21] Ervin, V. J., Computational bases for RT_{k} and BDM_{k} on triangles, Comput. Maths Applics., 64, 2765-2774, (2012) · Zbl 1268.65152 · doi:10.1016/j.camwa.2012.08.011
[22] Ervin, V. J., Approximation of coupled Stokes-Darcy flow in an axisymmetric domain, Comput. Meth. Appl. Mech. Engng, 258, 96-108, (2013) · Zbl 1286.76144 · doi:10.1016/j.cma.2013.02.004
[23] Gupta, S.; Soellinger, M.; Boesiger, P.; Poulikakos, D.; Kurtcuoglu, V., Three-dimensional computational modeling of subject-specific cerebrospinal fluid flow in the subarachnoid space, Trans. ASME J. Biomech. Engng, 131, (2009) · doi:10.1115/1.3005171
[24] Gupta, S.; Soellinger, M.; Grzybowski, D. M.; Boesiger, P.; Biddiscombe, J.; Poulikakos, D.; Kurtcuoglu, V., Cerebrospinal fluid dynamics in the human cranial subarachnoid space: an overlooked mediator of cerebral disease. I: computational model, J. R. Soc. Interface, 7, 1195-1204, (2010) · doi:10.1098/rsif.2010.0033
[25] Hazel, A. L.; Heil, M.; Waters, S. L.; Oliver, J. M., On the liquid lining in fluid-conveying curved tubes, J. Fluid Mech., 705, 213-233, (2012) · Zbl 1250.76193 · doi:10.1017/jfm.2011.346
[26] Heidari Pahlavian, S.; Loth, F.; Luciano, M.; Oshinski, J.; Martin, B. A., Neural tissue motion impacts cerebrospinal fluid dynamics at the cervical medullary junction: A patient-specific moving-boundary computational model, Ann. Biomed. Engng, 43, 12, 2911-2923, (2015) · doi:10.1007/s10439-015-1355-y
[27] Heidari Pahlavian, S.; Yiallourou, T.; Tubbs, R. S.; Bunck, A. C.; Loth, F.; Goodin, M.; Raisee, M.; Martin, B. A., The impact of spinal cord nerve roots and denticulate ligaments on cerebrospinal fluid dynamics in the cervical spine, PLoS ONE, 9, 4, (2014) · doi:10.1371/journal.pone.0091888
[28] Heil, M. & Hazel, A. L.2006oomph-lib – an object-oriented multi-physics finite-element library. In Fluid-Structure Interaction (ed. Schäfer, M. & Bungartz, H.-J.), pp. 19-49. Springer, oomph-lib is available as open-source software at http://www.oomph-lib.org. doi:10.1007/3-540-34596-5_2 · Zbl 1323.74085
[29] Hentschel, S.; Mardal, K.-A.; Lovgren, A. E.; Linge, S.; Haughton, V., Characterization of cyclic CSF flow in the foramen magnum and upper cervical spinal canal with MR flow imaging and computational fluid dynamics, Amer. J. Neuroradiol., 31, 997-1002, (2010) · doi:10.3174/ajnr.A1995
[30] Hewitt, R. E.; Hazel, A. L.; Clarke, R. J.; Denier, J. P., Unsteady flow in a torus after a sudden change in rotation rate, J. Fluid Mech., 688, 88-119, (2011) · Zbl 1241.76430 · doi:10.1017/jfm.2011.366
[31] Humphreys, J. D., Mechanisms of arterial remodelling in hypertension: Coupled roles of wall shear and intramural stress, Hypertension, 52, 2, 195-200, (2008) · doi:10.1161/HYPERTENSIONAHA.107.103440
[32] Kistler, S. F. & Scriven, L. E.1983Coating flows. In Computational Analysis of Polymer Processing (ed. Pearson, J. R. A. & Richardson, S. M.), pp. 243-299. Applied Science Publishers. doi:10.1007/978-94-009-6634-5_8
[33] Linninger, A. A.; Xenos, M.; Zhu, D. C.; Somayaji, M. R.; Srinivasa Kondapalli, S.; Penn, R. D., Cerebrospinal fluid flow in the normal and hydrocephalic human brain, IEEE Trans. Biomed. Engng, 54, 2, 291-302, (2007) · doi:10.1109/TBME.2006.886853
[34] Loth, F.; Yardimci, M. A.; Alperin, N., Hydrodynamic modeling of cerebrospinal fluid motion within the spinal cavity, Trans. ASME J. Biomech. Engng, 123, 1, 71-79, (2001)
[35] Martin, B. A.; Labuda, R.; Royston, T. J.; Oshinski, J. N.; Iskandar, B.; Loth, F., Spinal subarachnoid space pressure measurements in an in vitro spinal stenosis model: implications on syringomyelia theories, Trans. ASME J. Biomech. Engng, 132, 111007,1-11, (2010) · doi:10.1115/1.4000089
[36] Pihler-Puzovic, D.; Juel, A.; Peng, G. G.; Lister, J. R.; Heil, M., Displacement flows under elastic membranes. Part 1: experiments and direct numerical simulations, J. Fluid Mech., 784, 487-511, (2015) · Zbl 1382.76069 · doi:10.1017/jfm.2015.590
[37] Rossi, C.; Boss, A.; Steidle, G.; Martirosian, P.; Klose, U.; Capuani, S.; Maraviglia, B.; Claussen, C. D.; Schick, F., Water diffusion anisotropy in white and gray matter of the human spinal cord, J. Magn. Reson. Imag., 27, 3, 476-482, (2008) · doi:10.1002/jmri.21252
[38] Saffman, P., On the boundary condition at the surface of a porous medium, Stud. Appl. Maths, 50, 93-101, (1971) · Zbl 0271.76080 · doi:10.1002/sapm197150293
[39] Shaffer, N.; Martin, B.; Loth, F., Cerebrospinal fluid hydrodynamics in type I chiari malformation, Neurological Res., 33, 3, 247-260, (2011) · doi:10.1179/016164111X12962202723805
[40] Shewchuk, J. R.1996Triangle: engineering a 2D quality mesh generator and delaunay triangulator. In Lecture Notes in Computer Science (ed. Lin, M. C. & Manocha, Dinesh), vol. 1148, pp. 203-222. Springer, from the First ACM Workshop on Applied Computational Geometry.
[41] Simon, B. R., Multiphase poroelastic finite element models for soft tissue structure, Appl. Mech. Rev., 45, 6, 191-218, (1992) · doi:10.1115/1.3121397
[42] Smillie, A.; Sobey, I.; Molnar, Z., A hydroelastic model of hydrocephalus, J. Fluid Mech., 539, 417-443, (2005) · Zbl 1076.74040 · doi:10.1017/S0022112005005707
[43] Stockman, H. W., Effect of anatomical fine structure on the flow of cerebrospinal fluid in the spinal subarachnoid space, Trans. ASME J. Biomech. Engng, 128, 106-114, (2006) · doi:10.1115/1.2132372
[44] Støverud, K. H., Alnæs, M., Langtangen, H. P., Haughton, V. & Mardal, K.-A.2015 Poro-elastic modeling of syringomyelia – a systematic study of the effects of pia mater, central canal, median fissure, white and gray matter on pressure wave propagation and fluid movement within the cervical spinal cord. Comput. Meth. Biomech. Biomed. Engng, pp. 1-13.
[45] Tully, B.; Ventikos, Y., Cerebral water transport using multiple-network poroelastic theory: application to normal pressure hydrocephalus, J. Fluid Mech., 667, 188-215, (2011) · Zbl 1225.76317 · doi:10.1017/S0022112010004428
[46] Van De Vosse, F. N.; Stergiopulos, N., Pulse wave propagation in the arterial tree, Annu. Rev. Fluid Mech., 43, 1, 467-499, (2011) · Zbl 1299.76328 · doi:10.1146/annurev-fluid-122109-160730
[47] Yiallourou, T. I.; Kröger, J. R.; Stergiopulos, N.; Maintz, D.; Martin, B. A.; Bunck, A. C., Quantitative comparison of 4D MRI flow measurements to 3D computational fluid dynamics simulation of cerebrospinal fluid movement in the spinal subarachnoid space, PLoS ONE, 7, e52284, (2015) · doi:10.1371/journal.pone.0052284
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.