×

zbMATH — the first resource for mathematics

Limit laws for random vectors with an extreme component. (English) Zbl 1125.60049
Summary: Models based on assumptions of multivariate regular variation and hidden regular variation provide ways to describe a broad range of extremal dependence structures when marginal distributions are heavy tailed. Multivariate regular variation provides a rich description of extremal dependence in the case of asymptotic dependence, but fails to distinguish between exact independence and asymptotic independence. Hidden regular variation addresses this problem by requiring components of the random vector to be simultaneously large but on a smaller scale than the scale for the marginal distributions. In doing so, hidden regular variation typically restricts attention to that part of the probability space where all variables are simultaneously large. However, since under asymptotic independence the largest values do not occur in the same observation, the region where variables are simultaneously large may not be of primary interest. A different philosophy was offered in the paper of J. E. Heffernan and J. A. Tawn [J. R. Stat. Soc. Ser. B Stat. Methodol. 66, 497–546 (2004; Zbl 1046.62051)] which allows examination of distributional tails other than the joint tail. This approach used an asymptotic argument which conditions on one component of the random vector and finds the limiting conditional distribution of the remaining components as the conditioning variable becomes large. In this paper, we provide a thorough mathematical examination of the limiting arguments building on the orientation of Heffernan and Tawn [loc. cit.]. We examine the conditions required for the assumptions made by the conditioning approach to hold, and highlight simililarities and differences between the new and established methods.

MSC:
60G70 Extreme value theory; extremal stochastic processes
62G32 Statistics of extreme values; tail inference
Software:
ismev
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Abdous, B., Fougères, A.-L. and Ghoudi, K. (2005). Extreme behaviour for bivariate elliptical distributions. Canad. J. Statist. 33 317–334. · Zbl 1096.62053 · doi:10.1002/cjs.5540330302
[2] Balkema, A. A. (1973). Monotone Transformations and Limit Laws . Mathematisch Centrum, Amsterdam. · Zbl 0287.60023
[3] Basrak, B., Davis, R. and Mikosch, T. (2002). A characterization of multivariate regular variation. Ann. Appl. Probab. 12 908–920. · Zbl 1070.60011 · doi:10.1214/aoap/1031863174
[4] Bingham, N., Goldie, C. and Teugels, J. (1987). Regular Variation . Cambridge Univ. Press. · Zbl 0617.26001
[5] Coles, S. G. and Tawn, J. A. (1991). Modelling extreme multivariate events. J. Roy. Statist. Soc. Ser. B 53 377–392. JSTOR: · Zbl 0800.60020 · links.jstor.org
[6] Coles, S. G. and Tawn, J. A. (1994). Statistical methods for multivariate extremes: An application to structural design (with discussion). J. R. Stat. Soc. Ser. C 43 1–48. · Zbl 0825.62717 · doi:10.2307/2986112
[7] Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer, London. · Zbl 0980.62043
[8] Davison, A. C. and Smith, R. L. (1990). Models for exceedances over high thresholds (with discussion). J. Roy. Statist. Soc. Ser. B 52 393–442. JSTOR: · Zbl 0706.62039 · links.jstor.org
[9] Embrechts, P., Kluppelberg, C. and Mikosch, T. (1997). Modelling Extreme Events for Insurance and Finance . Springer, Berlin. · Zbl 0873.62116
[10] Feller, W. (1971). An Introduction to Probability Theory and Its Applications , 2nd ed. Wiley, New York. · Zbl 0219.60003
[11] Geluk, J. L. and de Haan, L. (1987). Regular Variation , Extensions and Tauberian Theorems . Stichting Mathematisch Centrum, Amsterdam. · Zbl 0624.26003
[12] de Haan, L. (1970). On Regular Variation and Its Application to the Weak Convergence of Sample Extremes. Math. Centrum, Amsterdam. · Zbl 0226.60039
[13] de Haan, L. (1974). Equivalence classes of regularly varying functions. Stochastic Process. Appl. 2 243–259. · Zbl 0287.26003 · doi:10.1016/0304-4149(74)90017-9
[14] de Haan, L. (1976). An Abel–Tauber theorem for Laplace transforms. J. London Math. Soc. (2) 13 537–542. · Zbl 0331.44002 · doi:10.1112/jlms/s2-13.3.537
[15] de Haan, L. (1985). Extremes in higher dimensions: The model and some statistics. In Proceedings of the 45th Session of the International Statistical Institute 4 ( Amsterdam , 1985 ) 185–192. Bull. Inst. Internat. Statist. 51 . ISI, Hague, Netherlands. · Zbl 0646.62016
[16] de Haan, L. and de Ronde, J. (1998). Sea and wind: Multivariate extremes at work. Extremes 1 7–46. · Zbl 0921.62144 · doi:10.1023/A:1009909800311
[17] de Haan, L. and Ferreira, A. (2006). Extreme Value Theory : An Introduction . Springer, New York. · Zbl 1101.62002
[18] de Haan, L. and Resnick, S. I. (1979). Conjugate \(\pi\)-variation and process inversion. Ann. Probab. 7 1028–1035. · Zbl 0428.60033 · doi:10.1214/aop/1176994895
[19] de Haan, L. and Resnick, S. (1977). Limit theory for multivariate sample extremes. Z. Wahrsch. Verw. Gebiete 40 317–337. · Zbl 0375.60031 · doi:10.1007/BF00533086
[20] Heffernan, J. and Resnick, S. (2005). Hidden regular variation and the rank transform. Adv. in Appl. Probab. 37 393–414. · Zbl 1073.60057 · doi:10.1239/aap/1118858631
[21] Heffernan, J. and Tawn. J. (2004). A conditional approach for multivariate extreme values (with discussion). J. R. Stat. Soc. Ser. B Stat. Methodol. 66 497–546. · Zbl 1046.62051 · doi:10.1111/j.1467-9868.2004.02050.x
[22] Kallenberg, O. (1983). Random Measures , 3rd ed. Akademie-Verlag, Berlin. · Zbl 0544.60053
[23] Kuratowski, K. (1966). Topology . I. New edition, revised and augmented. Translated from the French by J. Jaworowski. Academic Press, New York. · Zbl 0158.40802
[24] Ledford, A. and Tawn, J. (1996). Statistics for near independence in multivariate extreme values. Biometrika 83 169–187. JSTOR: · Zbl 0865.62040 · doi:10.1093/biomet/83.1.169 · www3.oup.co.uk
[25] Ledford, A. and Tawn, J. (1997). Modelling dependence within joint tail regions. J. Roy. Statist. Soc. Ser. B 59 475–499. JSTOR: · Zbl 0886.62063 · doi:10.1111/1467-9868.00080 · links.jstor.org
[26] Ledford, A. and Tawn, J. (1998). Concomitant tail behaviour for extremes. Adv. in Appl. Probab. 30 197–215. · Zbl 0905.60034 · doi:10.1239/aap/1035228000
[27] Maulik, K. and Resnick, S. (2005). Characterizations and examples of hidden regular variation. Extremes 7 31–67. · Zbl 1088.62066 · doi:10.1007/s10687-004-4728-4
[28] Maulik, K., Resnick, S. and Rootzén, H. (2002). Asymptotic independence and a network traffic model. J. Appl. Probab. 39 671–699. · Zbl 1090.90017 · doi:10.1239/jap/1037816012
[29] Neveu, J. (1977). Processus ponctuels. École d ’ Été de Probabilités de Saint-Flour VI—1976 . Lecture Notes in Math. 598 249–445. Springer, Berlin. · Zbl 0439.60044 · doi:10.1007/BFb0097494
[30] Pickands, J. (1981). Multivariate extreme value distributions. In Proceedings of the 43rd Session of the International Statististical Institute 2 859–878. · Zbl 0518.62045
[31] Reiss, R.-D. and Thomas, M. (2001). Statistical Analysis of Extreme Values , 2nd ed. Birkhäuser, Basel. · Zbl 1002.62002
[32] Resnick, S. (2006). Heavy Tail Phenomena : Probabilistic and Statistical Modeling . Springer, New York. · Zbl 1152.62029
[33] Resnick, S. (1973). Limit laws for record values. Stochastic Process. Appl. 1 67–82. · Zbl 0253.60028 · doi:10.1016/0304-4149(73)90033-1
[34] Resnick, S. (1987). Extreme Values , Regular Variation and Point Processes . Springer, New York. · Zbl 0633.60001
[35] Resnick, S. (1999). A Probability Path . Birkhäuser, Boston. · Zbl 0944.60002
[36] Resnick, S. (2002). Hidden regular variation, second order regular variation and asymptotic independence. Extremes 5 303–336. · Zbl 1035.60053 · doi:10.1023/A:1025148622954
[37] Resnick, S. (2004). On the foundations of multivariate heavy-tail analysis. In Stochastic Methods and Their Applications (J. Gani and E. Seneta, eds.) 191–212. J. Appl. Probab. 41A . Papers in honour of C. C. Heyde. · Zbl 1049.62056 · doi:10.1239/jap/1082552199
[38] Seneta, E. (1976). Regularly Varying Functions . Springer, New York. · Zbl 0324.26002 · doi:10.1007/BFb0079658
[39] Smith, R. (1989). Extreme value analysis of environmental time series: An application to trend detection in ground level ozone (with discussion). Statist. Sci. 4 367–393. · Zbl 0955.62646 · doi:10.1214/ss/1177012400
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.