×

Modeling heat-induced chemical reaction in nanothermites excited by pulse laser: a hot spot model. (English) Zbl 1186.82122

Summary: A hot spot model, involving interaction of pulse laser with nanoparticles where heat diffusion and exothermic chemical reaction are considered and spread out of heat and chemical reaction, is developed to model the thermal reaction dynamic process of Al/NC (nitrocellulose) nanothermites excited by pulse laser for the purpose of verifying the experimental ablation criterion proposed recently and providing a microscopic insight into different physical pathways leading to ablation. In this model, the spatial position and conversion of matters taking place in chemical reactions are regarded as the functions of time, space, and temperature. An exact expression of power density absorbed by nanoparticles in matrix is incorporated to calculate the diameters of chemical reaction region. Calculation results justify experimental ablation criterion, and show that thermal decomposition mechanism predominates the nanosecond pulse-excited process before ablation but it is not suitable for the 100 ps regime which is qualitatively attributed to shock pressure. The effects of pulse duration and nanoparticle size on ablation threshold are examined.

MSC:

82D80 Statistical mechanics of nanostructures and nanoparticles
80A32 Chemically reacting flows
78A60 Lasers, masers, optical bistability, nonlinear optics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Dlott D. D., Mater. Sci. Technol. 22 pp 465–
[2] DOI: 10.1021/jp072662h · doi:10.1021/jp072662h
[3] J. J. Granier and M. L. Pantoya, 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference (Missouri, USA, 2002) p. 3030.
[4] DOI: 10.1021/jp0269322 · doi:10.1021/jp0269322
[5] Frank-Kamenetskii D. A., Diffusion and Heat Exchange in Chemical Kinetics (1995)
[6] DOI: 10.1080/714923185 · doi:10.1080/714923185
[7] DOI: 10.1002/1521-4087(200112)26:6<284::AID-PREP284>3.0.CO;2-T · doi:10.1002/1521-4087(200112)26:6<284::AID-PREP284>3.0.CO;2-T
[8] DOI: 10.1063/1.1990265 · doi:10.1063/1.1990265
[9] DOI: 10.1063/1.1652250 · doi:10.1063/1.1652250
[10] DOI: 10.1002/prep.200400097 · doi:10.1002/prep.200400097
[11] DOI: 10.1016/B978-0-08-054721-3.50037-X · doi:10.1016/B978-0-08-054721-3.50037-X
[12] DOI: 10.1016/j.cplett.2006.01.063 · doi:10.1016/j.cplett.2006.01.063
[13] DOI: 10.1115/1.2911377 · doi:10.1115/1.2911377
[14] Chen G., Encyclopedia of Nanoscience and Nanotechnology 7 pp 429–
[15] DOI: 10.1016/S0375-9601(98)00573-8 · doi:10.1016/S0375-9601(98)00573-8
[16] DOI: 10.4324/9780203212554 · doi:10.4324/9780203212554
[17] Weast R., CRC Handbook of Chemistry and Physics (1984)
[18] DOI: 10.1016/S0301-0104(99)00298-0 · doi:10.1016/S0301-0104(99)00298-0
[19] DOI: 10.1115/1.1929779 · doi:10.1115/1.1929779
[20] DOI: 10.1063/1.1794894 · doi:10.1063/1.1794894
[21] DOI: 10.1103/PhysRevB.78.125408 · doi:10.1103/PhysRevB.78.125408
[22] Khasainov B. A., Chem. Phys. Rep. 15 pp 987–
[23] DOI: 10.1016/0010-2180(92)90023-I · doi:10.1016/0010-2180(92)90023-I
[24] DOI: 10.1002/(SICI)1521-4087(199906)24:03<113::AID-PREP113>3.0.CO;2-3 · doi:10.1002/(SICI)1521-4087(199906)24:03<113::AID-PREP113>3.0.CO;2-3
[25] Dong H. S., Thermogram Set of Energetic Materials (2002)
[26] Hare D. E., J. Appl. Phys. 72 pp 2440–
[27] DOI: 10.1002/prep.200500001 · doi:10.1002/prep.200500001
[28] DOI: 10.1364/JOSAA.24.001562 · doi:10.1364/JOSAA.24.001562
[29] DOI: 10.1364/JOSAB.13.000459 · doi:10.1364/JOSAB.13.000459
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.