×

Ground states for critical fractional Schrödinger-Poisson systems with vanishing potentials. (English) Zbl 07781368


MSC:

35J61 Semilinear elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35J50 Variational methods for elliptic systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] AmbrosettiA. On Schrödinger‐Possion systems. Milan J Math. 2008;76:257‐274. · Zbl 1181.35257
[2] BenciV, FortunatoD. An eigenvalue problem for the Schrödinger‐Maxwell equation. Topol Methods Nonl Anal. 1998;11:283‐293. · Zbl 0926.35125
[3] D’AprileT, MugnaiD. Solitary waves for nonlinear Klein‐Gordon‐Maxwell and Schrödinger‐Maxwell equations. Proc Roy Soc of Edinburgh Sect A. 2004;134:893‐906. · Zbl 1064.35182
[4] AlvesCO, SoutoMAS, SoaresSH. Schrödinger‐Poisson equations without Ambrosetti‐Rabinowitz condition. J Math Anal Appl. 2011;377:584‐592. · Zbl 1211.35249
[5] CeramiG, VairaG. Positive solutions for some non‐autonomous Schrödinger‐Poisson systems. J Differ Equ. 2010;248:521‐543. · Zbl 1183.35109
[6] MugnaiD. Non‐existence results for the coupled Klein‐Gordon‐Maxwell equations. Adv Nonlinear Stud. 2004;4:307‐322. · Zbl 1142.35406
[7] RuizD. The Schrödinger‐Poisson equation under the effect of a nonlinear local term. J Funct Anal. 2006;237:655‐674. · Zbl 1136.35037
[8] YinR, ZhangJ, ShangX. Positive ground state solutions for Schrödinger‐Poisson system with critical nonlocal term in
[( {\mathbb{R}}^3 \]\). Math Methods Appl Sci. 2020;43:8736‐8752. · Zbl 1454.35356
[9] ZhaoL, ZhaoF. Positive solutions for Schrödinger‐Poisson equations with a critical exponent. Nonlinear Anal TMA. 2009;70:2150‐2164. · Zbl 1156.35374
[10] AzzolliniA, D’AveniaP, VairaG. Generalized Schrödinger‐Newton system in dimension
[( N\ge 3 \]\): critical case. J Math Anal Appl. 2017;449:531‐552. · Zbl 1373.35120
[11] LiF, LiY, ShiJ. Existence and multiplicity of positive solutions to Schrödinger‐Poisson type systems with critical nonlocal term, Calc. Var Partial Differential Equations. 2017;134:56. doi:10.1007/s00526‐017‐1229‐2 · Zbl 1454.35116
[12] LiF, LiY, ShiJ. Existence of positive solutions to Schrödinger‐Poisson type systems with critical exponent. Commun Contemp Math. 2014;16:1450036. · Zbl 1309.35025
[13] LiuH. Positive solutions of an asymptotically periodic Schrödinger‐Poisson system with critical exponent. Nonlinear Anal RWA. 2016;32:198‐212. · Zbl 1350.35086
[14] FengX. Existence and concentration of ground state solutions for doubly critical Schrödinger‐Poisson‐type systems. Z Angew Math Phys. 2020;71(5):154. · Zbl 1448.35164
[15] LiN, HeX. Existence and multiplicity results for some Schrdinger‐Poisson system with critical growth. J Math Anal Appl. 2020;488(2):124071. · Zbl 1436.35141
[16] CaffarelliLA, SilvestreL. An extension problem related to the fractional Laplacian. Comm Partial Differential Equations. 2007;32:1245‐1260. · Zbl 1143.26002
[17] LaskinN. Fractional quantum mechanics and Lévy path integrals. Phys Lett A. 2000;268:298‐305. · Zbl 0948.81595
[18] LaskinN. Fractional Schrödinger equation. Phys Rev E. 2002;66:056108.
[19] ZhangJ, DoJM, SquassinaÓM. Fractional Schrödinger‐Poisson systems with a general subcritical or critical nonlinearity. Adv Nonlinear Stud. 2016;16:15‐30. · Zbl 1334.35407
[20] TengK. Existence of ground state solutions for the nonlinear fractional Schrödinger‐Poisson system with critical Sobolev exponent. J Differ Equ. 2016;261:3061‐3106. · Zbl 1386.35458
[21] MurciaE, SicilianoG. Positive semiclassical states for a fractional Schrödinger‐Poisson system. Differ Integral Equ. 2017;30:231‐258. · Zbl 1413.35018
[22] LiuZ, ZhangJ. Multiplicity and concentration of positive solutions for the fractional Schrödinger‐Poisson systems with critical growth, ESAIM: Control. Optim Cal Var. 2017;23:1515‐1542. · Zbl 1516.35467
[23] YuY, ZhaoF, ZhaoL. The concentration behavior of ground state solutions for a fractional Schrödinger‐Poisson system. Calc Var Partial Differ Equ. 2017;56(4):116. · Zbl 1437.35699
[24] YangZ, YuY, ZhaoF. Concentration behavior of ground state solutions for a fractional Schrödinger‐Poisson system involving critical exponent. Commun Contemp Math. 2019;21(06):1850027. · Zbl 1428.35427
[25] HeX. Positive solutions for fractional Schrödinger‐Poisson systems with doubly critical exponents. Appl Math Lett. 2021;120:107190. · Zbl 1475.35017
[26] FengX. Nontrivial solution for Schrödinger‐Poisson equations involving the fractional Laplacian with critical exponent. RACSAM. 2020;2020:115. doi:10.1007/s13398‐020‐00953‐w
[27] SecchiS. Ground state solutions for nonlinear fractional Schrödinger equations in
[( {\mathbb{R}}^N \]\). J Math Phy. 2013;54. doi:10.1063/1.4793990. · Zbl 1281.81034
[28] DóJM, MiyagakiOH, SquassinaM. Critical and subcritical fractional problems with vanishing potentials. Commun Contemp Math. 2016;18:1550063. · Zbl 1348.35152
[29] AlvesCO, SoutoMAS. Existence of solutions for a class of nonlinear Schrödinger equations with potentials vanishing at infinitly. J Differ Equ. 2013;254:1977‐1991. · Zbl 1263.35076
[30] Di NezzaE, PalatucciG, ValdinociE. Hithiker’s guide to the frctional Sobolev spaces. Bull Sci Math. 2012;136:521‐573. · Zbl 1252.46023
[31] ServadeiR, ValdinociE. The Brezis‐Nirenberg result for the fractional Laplacian. Trans Amer Math Soc. 2015;367:67‐102. · Zbl 1323.35202
[32] BerestyckiH, LoinsPL. Nonlinear scalar field equations: I. Existence of a ground state. Arch Ration Mech Anal. 1983;82:313‐345. · Zbl 0533.35029
[33] BrézisH, LiebE. A relation between pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc. 1983;88:486‐490. · Zbl 0526.46037
[34] QuS, HeX. On the number of concentrating solutions of a fractional Schrödinger‐Poisson system with doubly critical growth. 2021, preprint.
[35] FelmerP, QuaasA, TanJ. Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc Roy Soc of Edinburgh Sect A. 2012;142:1237‐1262. · Zbl 1290.35308
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.