×

On top quark mass effects to \(gg \rightarrow ZH\) at NLO. (English) Zbl 1373.81384

Summary: We compute next-to-leading order QCD corrections to the process \(gg \rightarrow ZH\). In the effective-theory approach we confirm the results in the literature. We consider top quark mass corrections via an asymptotic expansion and show that there is a good convergence below the top quark threshold which describes approximately a quarter of the total cross section. Our corrections are implemented in the publicly available C++ program ggzh.

MSC:

81V05 Strong interaction, including quantum chromodynamics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett.100 (2008) 242001 [arXiv:0802.2470] [INSPIRE]. · doi:10.1103/PhysRevLett.100.242001
[2] O. Brein, A. Djouadi and R. Harlander, NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders, Phys. Lett.B 579 (2004) 149 [hep-ph/0307206] [INSPIRE].
[3] O. Brein, R. Harlander, M. Wiesemann and T. Zirke, Top-Quark Mediated Effects in Hadronic Higgs-Strahlung, Eur. Phys. J.C 72 (2012) 1868 [arXiv:1111.0761] [INSPIRE]. · doi:10.1140/epjc/s10052-012-1868-6
[4] G. Ferrera, M. Grazzini and F. Tramontano, Associated WH production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett.107 (2011) 152003 [arXiv:1107.1164] [INSPIRE]. · doi:10.1103/PhysRevLett.107.152003
[5] G. Ferrera, M. Grazzini and F. Tramontano, Higher-order QCD effects for associated WH production and decay at the LHC, JHEP04 (2014) 039 [arXiv:1312.1669] [INSPIRE]. · doi:10.1007/JHEP04(2014)039
[6] G. Ferrera, M. Grazzini and F. Tramontano, Associated ZH production at hadron colliders: the fully differential NNLO QCD calculation, Phys. Lett.B 740 (2015) 51 [arXiv:1407.4747] [INSPIRE]. · doi:10.1016/j.physletb.2014.11.040
[7] M.L. Ciccolini, S. Dittmaier and M. Krämer, Electroweak radiative corrections to associated WH and ZH production at hadron colliders, Phys. Rev.D 68 (2003) 073003 [hep-ph/0306234] [INSPIRE].
[8] A. Denner, S. Dittmaier, S. Kallweit and A. Mück, Electroweak corrections to Higgs-strahlung off W/Z bosons at the Tevatron and the LHC with HAWK, JHEP03 (2012) 075 [arXiv:1112.5142] [INSPIRE]. · Zbl 1309.81322 · doi:10.1007/JHEP03(2012)075
[9] O. Brein, R.V. Harlander and T.J.E. Zirke, vh@nnlo — Higgs Strahlung at hadron colliders, Comput. Phys. Commun.184 (2013) 998 [arXiv:1210.5347] [INSPIRE].
[10] B.A. Kniehl, Associated Production of Higgs and Z Bosons From Gluon Fusion in Hadron Collisions, Phys. Rev.D 42 (1990) 2253 [INSPIRE].
[11] L. Altenkamp, S. Dittmaier, R.V. Harlander, H. Rzehak and T.J.E. Zirke, Gluon-induced Higgs-strahlung at next-to-leading order QCD, JHEP02 (2013) 078 [arXiv:1211.5015] [INSPIRE]. · doi:10.1007/JHEP02(2013)078
[12] S. Dawson, S. Dittmaier and M. Spira, Neutral Higgs boson pair production at hadron colliders: QCD corrections, Phys. Rev.D 58 (1998) 115012 [hep-ph/9805244] [INSPIRE].
[13] J. Grigo, J. Hoff, K. Melnikov and M. Steinhauser, On the Higgs boson pair production at the LHC, Nucl. Phys.B 875 (2013) 1 [arXiv:1305.7340] [INSPIRE]. · Zbl 1282.81197 · doi:10.1016/j.nuclphysb.2013.06.024
[14] D. de Florian and J. Mazzitelli, Higgs Boson Pair Production at Next-to-Next-to-Leading Order in QCD, Phys. Rev. Lett.111 (2013) 201801 [arXiv:1309.6594] [INSPIRE]. · doi:10.1103/PhysRevLett.111.201801
[15] D.Y. Shao, C.S. Li, H.T. Li and J. Wang, Threshold resummation effects in Higgs boson pair production at the LHC, JHEP07 (2013) 169 [arXiv:1301.1245] [INSPIRE]. · doi:10.1007/JHEP07(2013)169
[16] F. Maltoni, E. Vryonidou and M. Zaro, Top-quark mass effects in double and triple Higgs production in gluon-gluon fusion at NLO, JHEP11 (2014) 079 [arXiv:1408.6542] [INSPIRE]. · doi:10.1007/JHEP11(2014)079
[17] J. Grigo, K. Melnikov and M. Steinhauser, Virtual corrections to Higgs boson pair production in the large top quark mass limit, Nucl. Phys.B 888 (2014) 17 [arXiv:1408.2422] [INSPIRE]. · Zbl 1326.81239 · doi:10.1016/j.nuclphysb.2014.09.003
[18] J. Grigo, J. Hoff and M. Steinhauser, Higgs boson pair production: top quark mass effects at NLO and NNLO, Nucl. Phys.B 900 (2015) 412 [arXiv:1508.00909] [INSPIRE]. · Zbl 1331.81308 · doi:10.1016/j.nuclphysb.2015.09.012
[19] D. de Florian and J. Mazzitelli, Higgs pair production at next-to-next-to-leading logarithmic accuracy at the LHC, JHEP09 (2015) 053 [arXiv:1505.07122] [INSPIRE]. · doi:10.1007/JHEP09(2015)053
[20] G. Degrassi, P.P. Giardino and R. Gröber, On the two-loop virtual QCD corrections to Higgs boson pair production in the Standard Model, Eur. Phys. J.C 76 (2016) 411 [arXiv:1603.00385] [INSPIRE]. · doi:10.1140/epjc/s10052-016-4256-9
[21] D. de Florian et al., Differential Higgs Boson Pair Production at Next-to-Next-to-Leading Order in QCD, JHEP09 (2016) 151 [arXiv:1606.09519] [INSPIRE]. · doi:10.1007/JHEP09(2016)151
[22] S. Borowka et al., Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence, Phys. Rev. Lett.117 (2016) 012001 [Erratum ibid.117 (2016) 079901] [arXiv:1604.06447] [INSPIRE].
[23] S. Borowka et al., Full top quark mass dependence in Higgs boson pair production at NLO, JHEP10 (2016) 107 [arXiv:1608.04798] [INSPIRE]. · doi:10.1007/JHEP10(2016)107
[24] K. Melnikov and M. Dowling, Production of two Z-bosons in gluon fusion in the heavy top quark approximation, Phys. Lett.B 744 (2015) 43 [arXiv:1503.01274] [INSPIRE]. · doi:10.1016/j.physletb.2015.03.030
[25] J.M. Campbell, R.K. Ellis, M. Czakon and S. Kirchner, Two loop correction to interference in gg → ZZ, JHEP08 (2016) 011 [arXiv:1605.01380] [INSPIRE]. · doi:10.1007/JHEP08(2016)011
[26] V.A. Smirnov, Analytic Tools for Feynman Integrals, Springer Tracts Mod. Phys.250 (2012) 1 [INSPIRE]. · Zbl 1268.81004 · doi:10.1007/978-3-642-34886-0_1
[27] T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun.118 (1999) 153 [hep-ph/9807565] [INSPIRE].
[28] G.J. van Oldenborgh and J.A.M. Vermaseren, New Algorithms for One Loop Integrals, Z. Phys.C 46 (1990) 425 [INSPIRE].
[29] Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys.C 40 (2016) 100001 [INSPIRE].
[30] J.M. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys.G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE]. · doi:10.1088/0954-3899/43/2/023001
[31] A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J.C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE]. · doi:10.1140/epjc/s10052-015-3318-8
[32] A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun.189 (2015) 182 [arXiv:1408.2372] [INSPIRE]. · Zbl 1344.81030 · doi:10.1016/j.cpc.2014.11.024
[33] T. Gehrmann, T. Huber and D. Maître, Two-loop quark and gluon form-factors in dimensional regularisation, Phys. Lett.B 622 (2005) 295 [hep-ph/0507061] [INSPIRE]. · Zbl 1282.81197
[34] R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP02 (2008) 002 [arXiv:0712.1851] [INSPIRE]. · doi:10.1088/1126-6708/2008/02/002
[35] S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys.B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].
[36] https://www.ttp.kit.edu/preprints/2016/ttp16-051/.
[37] T. Gehrmann, L. Tancredi and E. Weihs, Two-loop QCD helicity amplitudes for gg → Zg and gg → Zγ, JHEP04 (2013) 101 [arXiv:1302.2630] [INSPIRE]. · doi:10.1007/JHEP04(2013)101
[38] T. Hahn, CUBA: A Library for multidimensional numerical integration, Comput. Phys. Commun.168 (2005) 78 [hep-ph/0404043] [INSPIRE]. · Zbl 1196.65052
[39] http://www.gnu.org/software/gsl/.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.