×

Cross-diffusion-driven Turing instability and weakly nonlinear analysis of Turing patterns in a uni-directional consumer-resource system. (English) Zbl 1372.35037

Summary: Spatiotemporal patterns driven by cross-diffusion of a uni-directional consumer-resource (C-R) system with Holling-II type functional response are investigated in this paper. The existence of a unique positive steady state of the considered system is studied first. The linear stability analysis shows that the cross-diffusion is the key mechanism for the formation of spatiotemporal patterns through Turing bifurcation. We choose the cross-diffusion coefficient as bifurcation parameter and discuss three different types of Turing bifurcations, corresponding to simple, double non-resonant and double resonant cases. Based on weakly nonlinear analysis with the multiple scale method and the adjoint system theory, we derive the amplitude equations of the Turing patterns near the Turing bifurcation point and obtain the analytical approximation solutions of the patterns for each case. Specially, some qualitative results of amplitude equations of the resonant case are given in detail. Finally, numerical simulations are performed to illustrate the weakly nonlinear theoretical predictions and through these simulations some patterns (single mode pattern, mixed-mode pattern, super-squares pattern, roll pattern, hexagonal pattern) are found. Simultaneously, numerical simulations show that the resource supplying rate has an important impact on the direction of Turing bifurcation.

MSC:

35B36 Pattern formations in context of PDEs
35B32 Bifurcations in context of PDEs
35K57 Reaction-diffusion equations
92D25 Population dynamics (general)
92D40 Ecology

Software:

Matlab
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Murray, JD: Mathematical Biology II: Spatial Models and Biomedical Applications. Springer, New York (2003) · Zbl 1006.92002
[2] MacArthur, RH, Levins, R: The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101, 377-385 (1967) · doi:10.1086/282505
[3] Holland, JN, DeAngelis, DL: Consumer-resource theory predicts dynamic transitions between outcomes of interspecific interactions. Ecol. Lett. 12, 1357-1366 (2009) · doi:10.1111/j.1461-0248.2009.01390.x
[4] Holland, JN; Ness, JH; Boyle, AL; Bronstein, JL, Mutualisms as consumer-resource interactions (2005), New York
[5] Holland, JN, DeAngelis, DL: A consumer-resource approach to the density-dependent population dynamics of mutualism. Ecology 91, 1286-1295 (2010) · doi:10.1890/09-1163.1
[6] Gross, K: Positive interactions among competitors can produce species-rich communities. Ecol. Lett. 11, 929-936 (2008) · doi:10.1111/j.1461-0248.2008.01204.x
[7] Wang, YS, DeAngelis, DL, Holland, JN: Uni-directional consumer-resource theory characterizing transitions of interaction outcomes. Ecol. Complex. 8, 249-257 (2011) · doi:10.1016/j.ecocom.2011.04.002
[8] Wang, YS, DeAngelis, DL: Transitions of interaction outcomes in a uni-directional consumer-resource system. J. Theor. Biol. 280, 43-49 (2011) · Zbl 1397.92607 · doi:10.1016/j.jtbi.2011.03.038
[9] Okubo, A, Levin, S: Diffusion and Ecological Problems: Modern Perspectives. Springer, Berlin (2001) · Zbl 1027.92022 · doi:10.1007/978-1-4757-4978-6
[10] Ghergu, M, Radulescu, V: Turing patterns in general reaction-diffusion systems of Brusselator type. Commun. Contemp. Math. 12, 661-679 (2010) · Zbl 1198.35276 · doi:10.1142/S0219199710003968
[11] Wang, JF, Shi, JP, Wei, JJ: Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey. J. Differ. Equ. 251, 1276-1304 (2011) · Zbl 1228.35037 · doi:10.1016/j.jde.2011.03.004
[12] Ghergu, M, Radulescu, V: Nonlinear PDEs: Mathematical Models in Biology, Chemistry and Population Genetics. Springer Monographs in Mathematics. Springer, Heidelberg (2012) · Zbl 1227.35001 · doi:10.1007/978-3-642-22664-9
[13] Cui, R, Shi, JP, Wu, BY: Strong Allee effect in a diffusive predator-prey system with a protection zond. J. Differ. Equ. 256, 108-129 (2014) · Zbl 1359.35096 · doi:10.1016/j.jde.2013.08.015
[14] Han, RJ, Dai, BX: Spatiotemporal dynamics and Hopf bifurcation in a delayed diffusive intraguild predation model with Holling II functional response. Int. J. Bifurc. Chaos 26(12), 1-31 (2016) · Zbl 1352.35202 · doi:10.1142/S0218127416501972
[15] Han, RJ, Dai, BX: Hopf bifurcation in a reaction-diffusive two-species model with nonlocal delay effect and general functional response. Chaos Solitons Fractals 96, 90-109 (2017) · Zbl 1372.35033 · doi:10.1016/j.chaos.2016.12.022
[16] Han, RJ, Dai, BX: Spatiotemporal dynamics and spatial pattern in a diffusive intraguild predation model with delay effect. Appl. Math. Comput. 312, 177-201 (2017) · Zbl 1426.35134
[17] Huang, J, Liu, Z, Ruan, S: Bifurcation and temporal periodic patterns in a plant-pollinator model with diffusion and time delay effects. J. Biol. Dyn. 11(51), 138-159 (2016) · Zbl 1448.92375
[18] Kerner, EH: A statistical mechanics of interacting biological species. Bull. Math. Biol. 19, 121-146 (1957)
[19] Kerner, EH: Further considerations on the statistical mechanics of biological associations. Bull. Math. Biol. 21, 217-255 (1959)
[20] Shigesada, N, Kawasaki, K, Teramoto, E: Spatial segregation of interacting species. J. Theor. Biol. 79, 83-99 (1979) · doi:10.1016/0022-5193(79)90258-3
[21] Holmes, EE, Lewis, MA, Banks, JE, Veit, RR: Partial differential equations in ecology: spatial interactions and population dynamics. Ecology 75, 17-29 (1994) · doi:10.2307/1939378
[22] Lou, Y, Ni, WM: Diffusion, self-diffusion and cross-diffusion. J. Differ. Equ. 131, 79-131 (1998) · Zbl 0867.35032 · doi:10.1006/jdeq.1996.0157
[23] Ni, WM: Diffusion, cross-diffusion and their spiker-layer steady states. Not. Am. Math. Soc. 45, 9-18 (1998) · Zbl 0917.35047
[24] Lou, Y, Ni, WM: Pattern formation in a cross-diffusion system. Discrete Contin. Dyn. Syst. 35, 1589-1607 (2015) · Zbl 1307.35040 · doi:10.3934/dcds.2015.35.1589
[25] Xie, Z: Cross-diffusion induced Turing instability for a three species food chain model. J. Math. Anal. Appl. 388, 539-547 (2012) · Zbl 1243.35093 · doi:10.1016/j.jmaa.2011.10.054
[26] Ruiz-Baier, R, Tian, C: Mathematical analysis and numerical simulation of pattern formation under cross-diffusion. Nonlinear Anal. 14, 601-612 (2013) · Zbl 1263.92007 · doi:10.1016/j.nonrwa.2012.07.020
[27] Lv, Y, Yuan, R, Pei, Y: Turning pattern formation in a three species model with generalist predator and cross diffusion. Nonlinear Anal. 85, 214-232 (2013) · Zbl 1283.35152 · doi:10.1016/j.na.2013.03.001
[28] Ling, Z, Zhang, L, Lin, ZG: Turing pattern formation in a predator-prey system with cross diffusion. Appl. Math. Model. 38, 5022-5032 (2014) · Zbl 1428.92090 · doi:10.1016/j.apm.2014.04.015
[29] Haile, D, Xie, Z: Long-tiem behavior and Turing instability induced by cross-diffusion in a three species food chain model with a Holling type-II functional response. Math. Biosci. 267, 134-148 (2015) · Zbl 1328.35095 · doi:10.1016/j.mbs.2015.07.001
[30] Sun, G, Jin, Z, Liu, Q, Li, L: Spatial pattern in an epidemic system with cross-diffusion of the susceptible. J. Biol. Syst. 17, 1-12 (2009) · Zbl 1364.92053
[31] Sun, G, Jin, Z, Liu, Q, Li, L: Spatial pattern in a predator-prey model with both self- and cross-diffusion. Int. J. Mod. Phys. C 20, 71-84 (2009) · Zbl 1155.35476 · doi:10.1142/S0129183109013467
[32] Sun, G, Jin, Z, Li, L, Haque, M, Li, B: Spatial patterns of a predator-prey model with cross-diffusion. Nonlinear Dyn. 69, 1631-1638 (2012) · Zbl 1263.34062 · doi:10.1007/s11071-012-0374-6
[33] Guin, LN, Haque, M, Mandal, PK: The spatial patterns through diffusion-driven instability in a predator-prey model. Appl. Math. Model. 36, 1825-1841 (2012) · Zbl 1242.35207 · doi:10.1016/j.apm.2011.05.055
[34] Guin, LN: Existence of spatial patterns in a predator-prey model with self- and cross-diffusion. Appl. Math. Comput. 226, 320-335 (2014) · Zbl 1354.92062
[35] Fang, L, Wang, J: The global stability and pattern formations of a predator-prey system with consuming resource. Appl. Math. Lett. 58, 49-55 (2016) · Zbl 1339.35040 · doi:10.1016/j.aml.2016.01.020
[36] Wen, ZJ, Fu, SM: Turing instability for a competitor-competitor-mutualist model with nonlinear cross-diffusion effects. Chaos Solitons Fractals 91, 379-385 (2016) · Zbl 1372.92096 · doi:10.1016/j.chaos.2016.06.019
[37] Ghorai, S, Poria, S: Turing patterns induced by cross-diffusion in a predator-prey system in presence of habit complexity. Chaos Solitons Fractals 91, 421-429 (2016) · Zbl 1372.92078 · doi:10.1016/j.chaos.2016.07.003
[38] Gambino, G, Lombardo, MC, Sammartino, M: Pattern formation driven by cross-diffusion in a 2D domain. Nonlinear Anal. 14, 1755-1779 (2013) · Zbl 1270.35088 · doi:10.1016/j.nonrwa.2012.11.009
[39] Gambino, G, Lombardo, MC, Sammartino, M, Sciacca, V: Turing pattern formation in the Brusselator system with nonlinear diffusion. Phys. Rev. E 88, 042925 (2013)
[40] Tang, X, Song, Y: Cross-diffusion induced spatiotemporal patterns in a predator-prey model with herd behavior. Nonlinear Anal. 24, 36-49 (2015) · Zbl 1336.92073 · doi:10.1016/j.nonrwa.2014.12.006
[41] Madzvamuse, A, Ndakwo, HS, Barreira, R: Cross-diffusion-driven instability for reaction-diffusion systems: analysis and simulations. J. Math. Biol. 70, 709-743 (2015) · Zbl 1335.92035 · doi:10.1007/s00285-014-0779-6
[42] Peng, Y, Zhang, T: Turing instability and pattern induced by cross-diffusion in a predator-prey system with Allee effect. Appl. Math. Comput. 275, 1-12 (2016) · Zbl 1410.92108
[43] Bampfylde, CJ, Lewis, MA: Biological control through intraguild predation: case studies in pest control, invasing species and range expansion. Bull. Math. Biol. 69, 1031-1066 (2007) · Zbl 1298.92108 · doi:10.1007/s11538-006-9158-9
[44] Fan, S: A new extracting formula and a new distinguishing means on the one variable cubic equation. J. Hainan Teach. Coll. 2, 91-98 (1989)
[45] Wollkind, DJ, Manoranjan, VS, Zhang, LM: Weakly nonlinear stability analyses of prototype reaction-diffusion model equations. SIAM Rev. 36, 176-214 (1994) · Zbl 0808.35056 · doi:10.1137/1036052
[46] Ouyang, Q: Pattern Formation in Reaction-Diffusion Systems. Shanghai Sci. Technol., Shanghai (2009)
[47] Marin, M, Lupu, M: On harmonic vibrations in thermoelasticity of micropolar bodies. J. Vib. Control 4(5), 507-518 (1998) · Zbl 0949.74502 · doi:10.1177/107754639800400501
[48] Marin, M: A domain of influence theorem for microstretch elastic materials. Nonlinear Anal. 11, 3446-3452 (2010) · Zbl 1396.74026 · doi:10.1016/j.nonrwa.2009.12.005
[49] Becherer, P, Morozov, AN, Saarloos, WV: Probing a subcritical instability with an amplitude expansion: an exploration of how far one can get. Physica D 238, 1827-1840 (2009) · Zbl 1177.35187
[50] Trefethen, LN: Spectral Methods in MATLAB. Tsinghua University Press, Beijing (2011) · Zbl 0953.68643
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.