×

zbMATH — the first resource for mathematics

Asymptotic distribution of values of isotropic here quadratic forms at \(S\)-integral points. (English) Zbl 1407.11084
Summary: We prove an analogue of a theorem of Eskin-Margulis-Mozes [A. Eskin et al., Ann. Math. (2) 147, No. 1, 93–141 (1998; Zbl 0906.11035)]. Suppose we are given a finite set of places \(S\) over \({\mathbb{Q}}\) containing the Archimedean place and excluding the prime \(2\), an irrational isotropic form \({\mathbf q}\) of rank \(n\geq 4\) on \({\mathbb{Q}}_S\), a product of \(p\)-adic intervals \(\mathsf{I}_p\), and a product \(\Omega\) of star-shaped sets. We show that unless \(n=4\) and \({\mathbf q}\) is split in at least one place, the number of \(S\) -integral vectors \(\mathbf v \in {\mathsf{T}} \Omega\) satisfying simultaneously \({\mathbf q}(\mathbf v) \in I_p\) for \(p \in S\) is asymptotically given by \[ \lambda({\mathbf q}, \Omega) | \mathsf{I}| \cdot \| {\mathsf{T}} \|^{n-2} \] as \({\mathsf{T}}\) goes to infinity, where \(|\mathsf{I}|\) is the product of Haar measures of the \(p\)-adic intervals \(I_p\) . The proof uses dynamics of unipotent flows on \(S\)-arithmetic homogeneous spaces; in particular, it relies on an equidistribution result for certain translates of orbits applied to test functions with a controlled growth at infinity, specified by an \(S\)-arithmetic variant of the \(\alpha\)-function introduced in [loc. cit.], and an \(S\)-arithemtic version of a theorem of [S. G. Dani and G. A. Margulis, in: I. M. Gelfand Seminar. Part 1: Papers of the Gelfand seminar in functional analysis held at Moscow University, Russia, September 1993. Providence, RI: American Mathematical Society. 91–137 (1993; Zbl 0814.22003)].
MSC:
11H50 Minima of forms
22E40 Discrete subgroups of Lie groups
22D40 Ergodic theory on groups
11P21 Lattice points in specified regions
05C15 Coloring of graphs and hypergraphs
37E25 Dynamical systems involving maps of trees and graphs
68R15 Combinatorics on words
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] E. Artin, Geometric Algebra, Interscience Tracts in Pure and Applied Mathematics, No. 3, Interscience, New York, (1957) · Zbl 0077.02101
[2] Borel; Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. Math., 75, 485-535, (1962) · Zbl 0107.14804
[3] A. Borel; G. Prasad, Values of isotropic quadratic forms at \begindocument \(S\) \enddocument-integral points, Compositio Math., 83, 347-372, (1992) · Zbl 0777.11008
[4] Borel; Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. Math., 75, 485-535, (1962) · Zbl 0107.14804
[5] R. Cheung, Integrability Estimates on the Space of\begindocument \(S\) \enddocument-Arithmetic Lattices with Applications to Quadratic Forms, Ph.D. Thesis, Yale University, 2016.
[6] H. Davenport, Analytic Methods for Diophantine Equations and Diophantine Inequalities, second edition, with a foreword by R. C. Vaughan, D. R. Heath-Brown and D. E. Freeman, edited and prepared for publication by T. D. Browning, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2005. · Zbl 1125.11018
[7] S. Dani; G. Margulis, Limit distributions of orbits of unipotent flows and values of quadratic forms, in I. M. Gel’fand Seminar, Adv. Soviet Math., Part 1, Amer. Math. Soc., 16, Part 1, Amer. Math. Soc., Providence, RI, 91-137, (1993) · Zbl 0814.22003
[8] H. Davenport; D. Ridout, Indefinite quadratic forms, Proc. London Math. Soc. (3), 9, 544-555, (1959) · Zbl 0091.04605
[9] J. Dieudonn, Sur les functions continues \begindocument \(p\) \enddocument-adiques, Bull. Sci. Math., (2), 68, 79-95, (1994)
[10] A. Eskin; G. Margulis; S. Mozes, Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math. (2), 147, 93-141, (1998) · Zbl 0906.11035
[11] A. Eskin; G. Margulis; S. Mozes, Quadratic forms of signature \begindocument \((2,2)\) \enddocument and eignevalue spacings on rectangular \begindocument \(2\) \enddocument-tori, Ann. of Math. (2), 161, 679-725, (2005) · Zbl 1075.11049
[12] G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Chelsea Publishing Company, New York, 1959. · Zbl 0086.26202
[13] G. H. Hardy, On the expression of a number as the sum of two squares, Quart. J. Math., 46, 263-283, (1915) · JFM 45.1253.01
[14] M. N. Huxley, Integer points, exponential sums and the Riemann zeta function, in Number Theory for the Millennium, II (Urbana, IL, 2000), A K Peters, Natick, MA, 2002, 275-290. · Zbl 1030.11053
[15] D. Kleinbock; G. Tomanov, Flows on \begindocument \(S\) \enddocument-arithmetic homogeneous spaces and applications to metric Diophantine approximation, Comment. Math. Helv., 82, 519-581, (2007) · Zbl 1135.11037
[16] E. Landau, Neue Untersuchungen über die Pfeiffer’sche Methode zur Abschätzung von Gitterpunktanzahlen, in Sitzungsber. D. Math-naturw. Classe der Kaiserl. Akad. d. Wissenschaften, 2, Abteilung, Wien, 469-505, (1915) · JFM 45.0313.01
[17] G. A. Margulis, Formes quadratriques indéfinies et flots unipotents sur les espaces homogénes, (French summary), C. R. Acad. Sci. Paris. Sér. I Math., 304, 249-253, (1987) · Zbl 0624.10011
[18] G. A. Margulis; G. Tomanov, Invariant measures of unipotent groups over local fields on homogeneous spaces, Inv. Math., 116, 347-392, (1994) · Zbl 0816.22004
[19] A. Oppenheim, The minima of indefinite quaternary quadratic forms, Proc. Nat. Acad. Sci. U.S.A., 15, 724-727, (1929) · JFM 55.0722.01
[20] V. Platonov; A. Rapinchuk, Algebraic Groups and Number Theory, Academic Press, (1994) · Zbl 0806.11002
[21] M. Ratner, Raghunathan’s conjectures for Cartesian products of real and \begindocument \(p\) \enddocument-adic Lie groups, Duke Math. J., 77, 275-382, (1995) · Zbl 0914.22016
[22] D. Ridout, Indefinite quadratic forms, Mathematika, 5, 122-124, (1958) · Zbl 0085.26901
[23] W. Schmidt, Approximation to algebraic numbers, Enseignement Math. (2), 17, 187-253, (1971) · Zbl 0226.10033
[24] J.-P. Serre, A Course in Arithmetic, translated from the French, Graduate Texts in Mathematics, No. 7, Springer-Verlag, New York-Heidelberg, (1973) · Zbl 0256.12001
[25] J.-P. Serre, Lie Algebras and Lie Groups, Lectures Notes in Mathematics, Vol. 1500, Springer-Verlag Berlin Heidelberg New York, (1965)
[26] J.-P. Serre, Quelques applications du théoréme de densité de Chebotarev, Inst. Hautes. Études Sci. Publ. Math., 54, 323-401, (1981)
[27] G. Tomanov, Orbits on homogeneous spaces of arithmetic origin and approximations, in Analysis on Homogeneous Spaces and Representation Theory of Lie Groups, Okayama-Kyoto, (1997), Adv. Stud. Pure Math., 26, Math. Soc. Japan, Tokyo, 265-297, (2000) · Zbl 0960.22006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.