×

The dual variable method for solving fluid flow difference equations on Delaunay triangulations. (English) Zbl 0729.76047

Summary: A complementary volume discretization of the transient Navier-Stokes equations on a triangular mesh is viewed as a system defining flows on an associated network. The dual variable method transforms this primitive system into an equivalent system which is one-fifth the size of the primitive system, eliminates the pressures and yields velocities that are exactly discretely divergence free.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids

Software:

symrcm
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Amit, R.; Hall, C. A.; Porsching, T. A., An application of network theory to the solution of implicit Navier-Stokes difference equations, J. Comput. Phys., 40, 183 (1981) · Zbl 0452.76024
[2] Dougall, R. S.; Hall, C. A.; Porsching, T. A., DUVAL: a computer program for the numerical solution of two-dimensional, two-phase flow problems, Electric Power Research Institute Report NP-2099, Vols 1-3 (1982), Palo Alto, Calif.
[3] Bulgarelli, U.; Graziani, G.; Mansutti, D.; Piva, R., A reduced implicit scheme, via discrete stream function generation, for unsteady Navier-Stokes equations in general curvilinear coordinates, (Presented at the 6th GAMM Conf.. Presented at the 6th GAMM Conf., Gottingen, Germany (1986))
[4] Burkardt, J.; Hall, C.; Porsching, T., The dual variable method for the solution of compressible fluid flow problems, SIAM Jl Algeb. Discr. Meth., 7, 220 (1986) · Zbl 0591.76124
[5] Frey, A. E.; Hall, C. A.; Porsching, T. A., Numerical simulation of confined unsteady aerodynamical flows, Int. J. Numer. Meth. Engng, 4, 1233 (1987)
[6] Goodrich, J. W.; Soh, W. Y., Time dependent viscous incompressible Navier-Stokes equations: the finite difference Galerkin formulations and stream function algorithms, J. Comput. Phys., 79, 113 (1988)
[7] Hall, C. A., Numerical solution of Navier-Stokes problems by the dual variable method, SIAM Jl Algeb. Discr. Meth., 6, 220 (1985) · Zbl 0575.65122
[8] Nicolaides, R. A., Flow discretization by complementary volume techniques, (Proc. 9th AIAA CFD Mtg. Proc. 9th AIAA CFD Mtg, Buffalo, N.Y.. Proc. 9th AIAA CFD Mtg. Proc. 9th AIAA CFD Mtg, Buffalo, N.Y., AIAA paper 89-1978 (1989)) · Zbl 0745.65063
[9] Nicolaides, R. A., Triangular discretization for the vorticity-velocity equations, (Proc. 7th Int. Conf. Finite Elements in Flow Problems. Proc. 7th Int. Conf. Finite Elements in Flow Problems, Huntsville, Ala (1989)), 1
[10] Frey, W. H.; Cavendish, J. C., Fast planar mesh generation using the Delaunay triangulation, General Motors Research Publication GMR-4555 (1983)
[11] Cavendish, J. C.; Field, D. A.; Frey, W. H., An approach to automatic three-dimensional finite element mesh generation, Int. J. Numer. Meth. Engng, 21, 329 (1985) · Zbl 0573.65090
[12] Watson, D. F., Computing the \(n- dimensional\) Delaunay tessellation with applications to Voronoi polytopes, Computer J., 24, 167 (1981)
[13] Gustafson, K.; Hartmann, R., Divergence-free bases for finite element schemes in hydrodynamics, SIAM Jl Numer. Analysis, 2, 697 (1983) · Zbl 0596.76030
[14] Berry, M.; Heath, M.; Kaneko, I.; Lawo, M.; Plemmons, R.; Ward, R., An algorithm to compute a sparse basis of the null space, Num. Math., 47, 483 (1985) · Zbl 0548.65024
[15] Coleman, T.; Pothen, A., The null space problem II: algorithms, SIAM Jl Algeb. Discr. Meth., 8, 544 (1987) · Zbl 0642.65028
[16] Griffiths, D. F., An approximately divergence-free 9-node velocity element for incompressible flows, Int. J. Numer. Meth. Fluids, 1, 323 (1981) · Zbl 0469.76026
[17] MacNeal, R. H., An asymmetrical finite difference network, Q. Appl. Math., 11, 295 (1953) · Zbl 0053.26304
[18] Stiefel, E., (Engeli; Ginsburg; Rutishanser; Stiefel, Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-adjoint Boundary Value Problems (1959), Burkauser: Burkauser Basel)
[19] Bank, R. E.; Rose, D. J., Some error estimates for the box method, SIAM Jl Numer. Analysis, 24, 777 (1987) · Zbl 0634.65105
[20] Dukowicz, J. K.; Cline, M. C.; Addessio, F. L., A general topology Godunov method, J. Comput. Phys., 82, 29 (1989) · Zbl 0665.76032
[21] Porsching, T. A., A network model for two-fluid, two-phase flow, Num. Meth. Partial Diff. Eqns, 1, 295 (1985) · Zbl 0637.76112
[22] Chou, S. H., A network model for incompressible two-fluid flow and its numerical solution, Num. Meth. Partial Diff. Eqns, 5, 1 (1989) · Zbl 0669.76130
[23] Harlow, F. H.; Welch, F. E., Numerical calculations of time dependent viscous incompressible flow of fluid with a free surface, Phys. Fluids, 8, 2182 (1965) · Zbl 1180.76043
[24] Frey, W. H., Selective refinement: a new strategy for automatic node placement in graded triangular meshes, Int. J. Numer. Meth. Engng, 24, 2183 (1987) · Zbl 0621.73098
[25] George, A.; Liu, J., (Computer Solution of Large Sparse Positive Definite Systems (1981), Prentice-Hall: Prentice-Hall Englewood Cliffs, N.J) · Zbl 0516.65010
[26] R.A. Nicolaides, Direct discretization of planar div-curl problems. SIAM Jl Numer. Analysis; R.A. Nicolaides, Direct discretization of planar div-curl problems. SIAM Jl Numer. Analysis · Zbl 0745.65063
[27] Porsching, T. A., A finite difference method for thermally expandable fluid transients, Nucl. Sci. Engng, 64, 177 (1977)
[28] Berge, C.; Ghouila-Houri, A., (Programming, Games and Transportation Networks (1965), Methuen: Methuen London)
[29] Ewing, D. J.; Fawkes, A. J.; Griffiths, J. R., Rules governing the numbers of nodes and elements in a finite element mesh, Int. J. Numer. Meth. Engng, 2, 597 (1970)
[30] Nijenhuis, A.; Wilf, H. S., (Combinatorial Algorithms (1978), Academic Press: Academic Press New York) · Zbl 0476.68047
[31] Kays, W.; London, A. L., (Compact Heat Exchangers (1984), McGraw-Hill: McGraw-Hill New York)
[32] Burggraf, O. R., Analytical and numerical studies of the structure of steady separated flows, J. Fluid Mech., 24, 113 (1966)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.