zbMATH — the first resource for mathematics

Structure evolution of h.c.p./c.c.p. metal oxide interfaces in solid-state reactions. (English) Zbl 1444.82024
Summary: The structure of crystalline interfaces plays an important role in solid-state reactions. The Al\(_2\)O\(_3\)/MgAl\(_2\)O\(_4\)/MgO system provides an ideal model system for investigating the mechanisms underlying the migration of interfaces during interface reaction. MgAl\(_2\)O\(_4\) layers have been grown between Al\(_2\)O\(_3\) and MgO, and the atomic structure of Al\(_2\)O\(_3\)/MgAl\(_2\)O\(_4\) interfaces at different growth stages was characterized using aberration-corrected scanning transmission electron microscopy. The oxygen sublattice transforms from hexagonal close-packed (h.c.p.) stacking in Al\(_2\)O\(_3\) to cubic close-packed (c.c.p.) stacking in MgAl\(_2\)O\(_4\). Partial dislocations associated with steps are observed at the interface. At the reaction-controlled early growth stages, such partial dislocations coexist with the edge dislocations. However, at the diffusion-controlled late growth stages, such partial dislocations are dominant. The observed structures indicate that progression of the Al\(_2\)O\(_3\)/MgAl\(_2\)O\(_4\) interface into Al\(_2\)O\(_3\) is accomplished by the glide of partial dislocations accompanied by the exchange of Al\(^{3+}\) and Mg\(^{2+}\) cations. The interface migration may be envisaged as a plane-by-plane zipper-like motion, which repeats along the interface facilitating its propagation. MgAl\(_2\)O\(_4\) grains can adopt two crystallographic orientations with a twinning orientation relationship, and grow by dislocations gliding in opposite directions. Where the oppositely propagating partial dislocations and interface steps meet, interlinked twin boundaries and incoherent \(\Sigma 3\) grain boundaries form. The newly grown MgAl\(_2\)O\(_4\) grains compete with each other, leading to a growth selection and successive coarsening of the MgAl\(_2\)O\(_4\) grains. This understanding could help to interpret the interface reaction or phase transformation of a wide range of materials that exhibit a similar h.c.p./c.c.p. transition.
82D25 Statistical mechanics of crystals
Full Text: DOI
[1] Abart, R. & Petrishcheva, E. (2011).Am. J. Sci.311, 517-527.
[2] Abart, R., Svoboda, J., Jerˇa´bek, P., Povoden-Karadeniz, E. & Habler, G. (2016).Am. J. Sci.316, 309-328.
[3] Akopian, N., Patriarche, G., Liu, L., Harmand, J. C. & Zwiller, V. (2010).Nano Lett.10, 1198-1201.
[4] Bakke, J. R., Tanskanen, J. T., Jung, H. J., Sinclair, R. & Bent, S. F. (2011).J. Mater. Chem.21, 743-751.
[5] Balluffi, R. W., Allen, S. & Carter, W. C. (2005).Kinetics of Materials. Wiley.
[6] Li, C., Habler, G., Baldwin, L. C. & Abart, R. (2018).Ultramicroscopy,184, 310-317.
[7] Li, C., Han, X., Hu, Y., Chen, C., Cheng, F. & Chen, J. (2015).Nat. Commun.6, 1-8.
[8] Li, C., Poplawsky, J., Paudel, N., Pennycook, T. J., Haigh, S. J., Al-Jassim, M. M., Yan, Y. & Pennycook, S. J. (2014).IEEE J. Photovoltaics,4, 1636-1643.
[9] Li, C., Poplawsky, J., Wu, Y., Lupini, A. R., Mouti, A., Leonard, D. N., Paudel, N., Jones, K., Yin, W., Al-Jassim, M., Yan, Y. & Pennycook, S. J. (2013).Ultramicroscopy,134, 113-125.
[10] Li, C., Poplawsky, J., Yan, Y. & Pennycook, S. J. (2017).Mater. Sci. Semicond. Process.65, 64-76.
[11] Li, C., Wu, Y., Pennycook, T. J., Lupini, A. R., Leonard, D. N., Yin, W., Paudel, N., Al-Jassim, M., Yan, Y. & Pennycook, S. J. (2013).Phys. Rev. Lett.111, 096403.
[12] Li, C., Zhang, Y.-Y., Pennycook, T. J., Wu, Y., Lupini, A. R., Paudel, N., Pantelides, S. T., Yan, Y. & Pennycook, S. J. (2016).Appl. Phys. Lett.109, 143107-6.
[13] Li, D. X., Pirouz, P., Heuer, A. H., Yadavalli, S. & Flynn, C. P. (1992). Philos. Mag. A,65, 403-425.
[14] Liu, M., Jing, D., Zhou, Z. & Guo, L. (2013).Nat. Commun.4, 1-8.
[15] Maiyalagan, T., Jarvis, K. A., Therese, S., Ferreira, P. J. & Manthiram, A. (2014).Nat. Commun.5, 3949.
[16] Murayama, M. & Nakayama, T. (1994).Phys. Rev. B Condens. Matter, 49, 4710-4724.
[17] Palmer, D. C. (2015).Z. Kristallogr.230, 559-572.
[18] Pennycook, S. J. & Nellist, P. D. (2011).Scanning Transmission ElectronMicroscopy:ImagingandAnalysis.NewYork: Springer.
[19] Philibert, J. (1991).Appl. Surf. Sci.53, 74-81.
[20] Pilania, G., Thijsse, B. J., Hoagland, R. G., Lazic´, I., Valone, S. M. & Liu, X.-Y. (2014).Sci. Rep.4, 1055-1059.
[21] Pitra, P., Kouamelan, A. N., BallE‘ vre, M. & Peucat, J.-J. (2010).J. Metamorphic Geol.28, 41-58.
[22] Porter, D. A., Easterling, K. E. & Sherif, M. (2009).Phase Transformations in Metals and Alloys. Boca Raton: CRC Press.
[23] Recˇnik, A., Mo¨bus, G. & Sˇturm, S. (2005).Ultramicroscopy,103, 285- 301.
[24] Schwarz, R. B. & Johnson, W. L. (1983).Phys. Rev. Lett.51, 415-418.
[25] Senz, S., Blum, W. & Hesse, D. (2001).Philos. Mag. A,81, 109-124.
[26] Sickafus, K. E., Wills, J. M. & Grimes, N. W. (1999).J. Am. Ceram. Soc.82, 3279-3292.
[27] Sieber, H., Hess, D. & Werner, P. (1997).Philos. Mag. A,75, 889-908.
[28] Sieber, H., Hesse, D., Senz, S., Heydenreich, J. & Pan, X. (1996).Z. Anorg. Allg. Chem.622, 1658-1666.
[29] Sieber, H., Hesse, D., Werner, P. & Senz, S. (1997).Defect Diffusion Forum,143-147, 649-654.
[30] Sieber, H., Werner, P. & Hesse, D. (1997).Philos. Mag. A,75, 909-924.
[31] Sui, R. & Charpentier, P. (2012).Chem. Rev.112, 3057-3082.
[32] Van Der Merwe, J. H. (1978).Crit. Rev. Solid State Mater. Sci.7, 209- 231.
[33] Vernon, R. H. (2004).A Practical Guide to Rock Microstructure. Cambridge University Press.
[34] Winterstein, J. P., Sezen, M., Recˇnik, A. & Barry Carter, C. (2016).J. Mater. Sci.51, 144-157.
[35] Wood, E. L. & Sansoz, F. (2012).Nanoscale,4, 5268-5276.
[36] Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q. & Chu, C. W. (1987).Phys. Rev. Lett. 58, 908-910.
[37] Wu, H. C., Kumar, A., Wang, J., Bi, X. F., Tome´, C. N., Zhang, Z. & Mao, S. X. (2016).Sci. Rep.6, 1-8.
[38] Zhao, Q., Yan, Z., Chen, C. & Chen, J. (2017).Chem. Rev.117, 10121- 10211.
[39] Zhou, H., Wu, L., Wang, H.-Q., Zheng, J.-C., Zhang, L., Kisslinger, K., Li, Y., Wang, Z., Cheng, H., Ke, S., Li, Y., Kang, J. & Zhu, Y. (2017). Nat. Commun.8, 1474.
[40] Zhu, H.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.