×

zbMATH — the first resource for mathematics

Non-equilibrium Ginzburg-Landau model driven by colored noise. (English) Zbl 0936.82020
Summary: A time dependent Ginzburg-Landau model under the influence of an external additive colored noise is studied. Numerical simulations have shown the presence of nonequilibrium phase transitions controlled by noise parameters. These results can be understood by means of a dynamical renormalization group analysis.

MSC:
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
82C28 Dynamic renormalization group methods applied to problems in time-dependent statistical mechanics
82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ma, S.K., Modern theory of critical phenomena, (1976), Benjamin Reading
[2] Hohenberg, P.C.; Halperin, B.I., Rev. mod. phys., 49, 435, (1977)
[3] Gunton, J.D.; San Miguel, M.; Shani, P.S., ()
[4] Kai, S.; Wakabayashi, S.; Imasaki, M., Phys. rev. A, 33, 2612, (1986)
[5] Dewel, G.; Brockmans, P.; Walgraef, D.; Horsthemke, W.; Lefever, R., Noise-induced transitions, Phys. rev. A, 31, 1983, (1984), Springer Berlin
[6] Mikhailov, A.S., Phys. rep., 184, 307, (1989)
[7] Armero, J.; Sancho, J.M.; Casademunt, J.; Lacasta, A.M.; Ramírez-Piscina, L., Phys. rev. lett., 76, 3045, (1996)
[8] Langer, J.S., Ann. phys., 65, 53, (1971)
[9] García-Ojalvo, J.; Sancho, J.M.; Ramírez-Piscina, L., Phys. lett. A, 168, 35, (1992)
[10] García-Ojalvo, J.; Sancho, J.M., Phys. rev. E, 49, 2769, (1994)
[11] Forster, D.; Nelson, D.R.; Stephen, M.J., Phys. rev. A, 16, 732, (1977)
[12] Medina, E.; Hwa, T.; Kardar, M.; Zhang, Y.C., Phys. rev. A, 39, 3053, (1989)
[13] García-Ojalvo, J.; Sancho, J.M.; Ramírez-Piscina, L., Phys. rev. A, 46, 4670, (1992)
[14] Lam, P.M.; Bagayoko, D., Phys. rev. E, 48, 3267, (1993)
[15] Fisher, M.E., Scaling, universality and renormalization group theory, () · Zbl 0589.76004
[16] Amit, D.J., Field theory, the renormalization group and critical phenomena, (1978), McGraw Hill New York
[17] Toral, R.; Chakrabarti, A., Phys. rev. B, 42, 2445, (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.