×

Symmetric Willmore surfaces of revolution satisfying arbitrary Dirichlet boundary data. (English) Zbl 1213.49050

Summary: We consider the Willmore boundary value problem for surfaces of revolution where, as Dirichlet boundary conditions, any symmetric set of position and angle may be prescribed. Using direct methods of the calculus of variations, we prove existence and regularity of minimising solutions. Moreover, we estimate the optimal Willmore energy and prove a number of qualitative properties of these solutions. Besides convexity-related properties we study in particular the limit when the radii of the boundary circles converge to 0, while the “length” of the surfaces of revolution is kept fixed. This singular limit is shown to be the sphere, irrespective of the prescribed boundary angles.
These analytical investigations are complemented by presenting a numerical algorithm, based on \(C^1\)-elements, and numerical studies. They intensively interact with geometric constructions in finding suitable minimising sequences for the Willmore functional.

MSC:

49Q10 Optimization of shapes other than minimal surfaces
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
35J65 Nonlinear boundary value problems for linear elliptic equations
34L30 Nonlinear ordinary differential operators
49M30 Other numerical methods in calculus of variations (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bauer E, Int. Math. Res. Not (10) pp 553– (2003) · Zbl 1029.53073 · doi:10.1155/S1073792803208072
[2] Bryant, J. Differ. Geom. 20 pp 23– (1984)
[3] Bryant P, Amer. J. Math. 108 pp 525– (1986) · Zbl 0604.58022 · doi:10.2307/2374654
[4] Dall’Acqua K. Deckelnick, Adv. Calc. Var. 1 pp 379– (2008) · Zbl 1194.49060 · doi:10.1515/ACV.2008.016
[5] DOI: 10.4171/IFB/134 · Zbl 1102.35047 · doi:10.4171/IFB/134
[6] Deckelnick H., Calc. Var. Partial Differential Equations 30 pp 293– (2007) · Zbl 1127.53002 · doi:10.1007/s00526-007-0089-6
[7] Deckelnick H., SIAM J. Math. Anal. 40 pp 2055– (2009) · Zbl 1177.53038 · doi:10.1137/07069033X
[8] Deckelnick H., Analysis 29 pp 229– (2009) · Zbl 1188.53065 · doi:10.1524/anly.2009.1035
[9] Droske M, Interfaces Free Bound. 6 pp 361– (2004) · Zbl 1062.35028 · doi:10.4171/IFB/105
[10] Dziuk, Math. 111 pp 55– (2008)
[11] Helfrich, Z. Naturforsch. C 28 pp 693– (1973)
[12] Hertrich-Jeromin U. Pinkall, J. Reine Angew. Math. 430 pp 21– (1992)
[13] Hildebrandt K, ACM International Conference Proceeding Series 257 pp 203– (2007)
[14] Konopelchenko G, Phys. Lett. B 459 pp 522– (1999) · Zbl 0987.81081 · doi:10.1016/S0370-2693(99)00699-1
[15] Langer D, J. Differ. Geom. 20 pp 1– (1984)
[16] Langer D, Bull. London Math. Soc. 16 pp 531– (1984) · Zbl 0554.53014 · doi:10.1112/blms/16.5.531
[17] Leschke F. Pedit, Math. Ann. 332 pp 381– (2005) · Zbl 1063.53058 · doi:10.1007/s00208-005-0630-x
[18] Quart. Appl. Math. 51 pp 363– (1993)
[19] Thin Solid Films 393 pp 19– (2001) · Zbl 0985.74002 · doi:10.1016/S0040-6090(01)01084-7
[20] Rivière, Invent. Math. 174 pp 1– (2008) · Zbl 1155.53031 · doi:10.1007/s00222-008-0129-7
[21] Schätzle The, Calc. Var. Partial Differential Equations 37 pp 275– (2010) · Zbl 1188.53006 · doi:10.1007/s00526-009-0244-3
[22] Simon, Commun. Anal. Geom. 1 pp 281– (1993)
[23] Thomsen Geometrie I, Abh. Math. Sem. Univ. Hamburg 3 pp 31– (1923) · JFM 49.0530.02 · doi:10.1007/BF02954615
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.