×

zbMATH — the first resource for mathematics

Spectral properties of graphene with periodic array of defects in a magnetic field. (English) Zbl 1406.82029
The fractal structure of the spectrum is an intriguing property of periodic nanosystems in a magnetic field. This type of spectrum was observed for periodic arrays of quantum dots as it was announced in numerous publications. The graphene can be used for a detailed investigation of the properties above. To calculate the spectrum for various magnetic fields, the tight-binding approximation or the zero-range potential model can be applied. Because Hamiltonians are used, one obtains the spectral equation in an explicit form. Here, the variation of the Hofstadter butterfly-type structure of the spectrum for a periodic array of defects in graphene is analyzed. The three types of defects are investigated: vacancy, nanopore and the Stone-Wale defect. A comparison of results of computations shows that the periodic defect significantly influences the spectrum, particularly, the bands and gaps. In the periodic vacancy case, the gap appears even in the case when there is no magnetic field. The nanopore, naturally, has a greater influence on the spectrum than the other mentioned defects.
MSC:
82D80 Statistical mechanical studies of nanostructures and nanoparticles
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
78A35 Motion of charged particles
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Geyler, V. A.; Popov, I. Y.u.; Popov, A. V.; etal., “Fractal Spectrum of Periodic Quantum Systems in a Magnetic Field,”, Chaos, Solitons and Fractals, 11, 281-288, (2000) · Zbl 1116.81313
[2] Hasegawa, Y.; Kohmoto, M., “Quantum Hall Effect and the Topological Number in Graphene,”, Phys. Rev. B, 74, 155415, (2006)
[3] Analytis, J. G.; Blundell, S. J.; Ardavan, A., “Landau Levels, Molecular Orbitals, and the Hofstadter Butterfly in Finite Systems, Am. J. Phys, 2, 613-618, (2004)
[4] Rammal, R., “Landau Level Spectrum of Bloch Electrons in a Honeycomb Lattice,”, Journal de Physique, 46, 1345-1354, (1985)
[5] Weiss, D.; von Klitzing, K.; Ploog, K.; etal., Magnetoresistance Oscillations in a Two Dimensional Electron Gas Induced by a Submicrometer Periodic Potential,”, Europhys. Lett, 8, 179-184, (1989)
[6] Gerhardts, R. R.; Weiss, D.; Wulf, U., “Magnetoresistance Oscillations in a Grid Potential: Indication of a Hofstadter-Type Energy Spectrum,”, Phys. Rev. B, 43, 5192-5195, (1991)
[7] Gudmundsson, V.; Gerhardts, R. R., Manifestation of the Hofstadter Buttery in Far-Infrared Absorption,”, Phys. Rev. B, 54, 5223-5227, (1996)
[8] Nemec, N.; Cuniberti, G., “Hofstadter Butterflies of Bilayer Graphene,”, Phys. Rev. B (Rapid Comm.), 75, 201404, (2007)
[9] Wang, Z. F.; Liu, F.; Chou, M. Y., “Fractal Landau-Level Spectra in Twisted Bilayer Graphene,”, Nano Lett, 12, 3833-3838, (2012)
[10] J. Brüning, V. V. Demidov, and V. A. Geyler, “Hofstadter-Type Spectral Diagrams for the Bloch Electron in Three Dimensions,” Phys. Rev. B 69, pp. 033202.
[11] Geyler, V. A.; Pavlov, B. S.; Popov, I. Y.u., “One-Particle Spectral Problem for Superlatticewith a Constant Magnetic Field,”, Atti Sem. Mat. Fis. Univ. Modena, 46, 79-124, (1998) · Zbl 0908.47063
[12] Grishanov, E. N.; Popov, I. Y.u., “Spectral Properties of Multi-Layered Graphene in a Magnetic Field,”, Superlattices and Microstructures, 86, 68-72, (2015)
[13] Grishanov, E. N.; Popov, I. Y.u., “Electron Spectrum for Aligned SWNT Array in a Magnetic Field,”, Superlattices and Microstructures, 100, 1276-1282, (2016)
[14] Pedersen, T. G.; Flindt, C.; Pedersen, J., “Optical Properties of Graphene Antidot Lattices,”, Phys. Rev. Lett, 100, 136804, (2008)
[15] Ensslin, K.; Petroff, P. M., “Magnetotransport Through an Antidot Lattice in GaAs-Al x Ga 1? x As Heterostructures,”, Phys. Rev. B, 41, 12307, (1990)
[16] Geyler, V. A.; Pavlov, B. S.; Popov, I. Y.u., “Spectral Properties of a Charged Particle in Antidot Array: A Limiting Case of Quantum Billiard,”, J. Math. Phys, 37, 5171-5194, (1996) · Zbl 0892.47066
[17] Fürst, J. A.; Pedersen, J. G.; Flindt, C.; etal., “Electronic Properties of Graphene Antidot Lattices,”, New J. Physics, 11, 095020, (2009)
[18] Shen, T.; Wu, Y. Q.; Capano, M. A.; etal., “Magnetoconductance Oscillations in Graphene Antidot Arrays,”, Appl. Phys. Lett, 93, 122102, (2008)
[19] Eroms, J.; Weiss, D., Weak Localization and Transport Gap in Graphene Antidot Lattices,”, New J. Phys, 11, 093021, (2009)
[20] Pentsak, E. O.; Kashina, A. S.; Polynski, M. V.; etal., “Spatial Imaging of Carbon Reactivity Centers in Pd/C Catalytic Systems,”, Chem. Sci, 6, 3302-3313, (2015)
[21] Geyler, V. A.; Popov, I. Y.u., “The Spectrum of a Magneto-Bloch Electron in a Periodic Array of Quantum Dots: Explicitly Solvable Model,”, Z. Phys. B, 93, 437-439, (1994)
[22] Geyler, V. A.; Popov, I. Y.u., “Periodic Array of Quantum Dots in a Magnetic Field: Irrational ux; Honeycomb Lattice,”, Z. Phys. B, 98, 473-477, (1995)
[23] Albeverio, S.; Geyler, V. A.; Grishanov, E. N.; etal., “Point Perturbations in Constant Curvature Spaces,”, Int. J. Theor. Phys, 49, 728-758, (2010) · Zbl 1190.83010
[24] Albeverio, S.; Gesztesy, F.; Hoegh-Krohn, R.; etal., with an appendix by P. Exner, (2005)
[25] Eremin, D. A.; Grishanov, E. N.; Ivanov, D. A.; etal., “An Explicitly Solvable Model for Tunneling Through a Quantum Dots Array in a Magnetic Field,”, Chin. J. Phys, 52, 1119-1122, (2014)
[26] S. Albeverio and P. Kurasov, Singular Perturbations of Differential Operators. Solvable Schrödinger Type Operators. London Mathematical Society Lecture Notes 271 (Cambridge Univ. Press, Cambridge, 2000). · Zbl 0945.47015
[27] Pavlov, B. S., “The Theory of Extensions and Explicity-Solvable Models,”, Russ. Math. Surv, 42, 127-168, (1997) · Zbl 0665.47004
[28] Behrndt, J.; Langer, M.; Lotoreichik, V., “Boundary Triples for Schrödinger Operators with Singular Interactions on Hypersurfaces,”, Nanosystems: Phys. Chem. Math, 7, 290-302, (2017) · Zbl 1353.47043
[29] H. Bateman and A. Erdélyi, Higher Transcendental Functions (V. I, McGraw-Hill, New York, 1953). · Zbl 0143.29202
[30] Geyler, V. A.; Margulis, V. A., “Anderson Localization in the Nondiscrete Maryland Model,”, Theor. Math. Phys, 70, 133-140, (1987)
[31] Geyler, V. A.; Demidov, V. V., “Spectrum of Three-Dimensional Landau Operator Perturbed by a Periodic Point Potential, Theor. Math. Phys, 103, 561-569, (1995) · Zbl 0856.35107
[32] Geyler, V. A., “The Two-Dimensional Scrödinger Operator with a Uniform Magnetic Field, and Its Perturbation by Periodic Zero-Range Potentials,”, St. Petersburg Math. J, 3, 489-532, (1992)
[33] Grishanov, E. N.; Popov, I. Y., “Computer Simulation of Periodic Nanostructures,”, Nanosystems: Phys. Chem. Math, 7, 865-868, (2016) · Zbl 1365.82033
[34] P. S. Pacheco, Parallel Programming With MPI (Morgan Kaufmann, NY, 1997). · Zbl 0877.68013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.