×

A dynamic feedback control strategy for control loops with time-varying delay. (English) Zbl 1291.93135

Summary: Dynamic systems of \(n\)th order with time-varying delay in the control loop are examined in this paper. The infinite-dimensional pure delay problem is approximated using a \(j\)th-order Padé approximation. Although the approximation provides a well-matched finite-dimensional configuration, it poses a new challenge in terms of unstable internal dynamics for the resulting non-minimum phase system. Such a non-minimum phase characteristic limits the closed-loop system bandwidth and leads to an imperfect tracking performance. To circumvent this problem, the unstable internal dynamics of the system is captured and a new dynamic compensator is proposed to stabilize it in a systematic framework. A dynamic controller is developed, which provides the overall system stability against unmatched perturbation and meets the desired tracking error dynamics. The proposed approach is then applied to fueling control in gasoline engines addressing the varying transport delay of the oxygen-sensor measurement in the exhaust. The developed methodology is finally validated on a Ford F-150 SI lean-burn engine model with large time-varying delay in the control loop.

MSC:

93B52 Feedback control
93D15 Stabilization of systems by feedback
93B51 Design techniques (robust design, computer-aided design, etc.)
93C95 Application models in control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] m K.J., European Journal of Control, 6 (2) pp 1– (2000)
[2] DOI: 10.1016/j.jprocont.2005.06.012 · doi:10.1016/j.jprocont.2005.06.012
[3] DOI: 10.1109/87.481761 · doi:10.1109/87.481761
[4] DOI: 10.1163/156855307781035628 · Zbl 05390339 · doi:10.1163/156855307781035628
[5] DOI: 10.1109/TIE.2011.2157284 · doi:10.1109/TIE.2011.2157284
[6] DOI: 10.1007/BFb0027478 · Zbl 0901.00019 · doi:10.1007/BFb0027478
[7] DOI: 10.1016/j.conengprac.2012.04.001 · doi:10.1016/j.conengprac.2012.04.001
[8] DOI: 10.1007/978-1-4612-0039-0 · doi:10.1007/978-1-4612-0039-0
[9] DOI: 10.1109/9.935057 · Zbl 1023.93056 · doi:10.1109/9.935057
[10] DOI: 10.1016/S0167-6911(03)00221-4 · Zbl 1157.34354 · doi:10.1016/S0167-6911(03)00221-4
[11] DOI: 10.1080/00207179.2012.659760 · Zbl 1256.93065 · doi:10.1080/00207179.2012.659760
[12] DOI: 10.1007/978-3-642-02897-7 · doi:10.1007/978-3-642-02897-7
[13] DOI: 10.1016/j.sysconle.2007.09.004 · Zbl 1134.93018 · doi:10.1016/j.sysconle.2007.09.004
[14] DOI: 10.1080/00207170802398018 · Zbl 1165.93025 · doi:10.1080/00207170802398018
[15] DOI: 10.1007/978-3-642-18482-6 · Zbl 1051.34002 · doi:10.1007/978-3-642-18482-6
[16] DOI: 10.1109/TCST.2007.899724 · doi:10.1109/TCST.2007.899724
[17] DOI: 10.1109/TAC.2005.846556 · Zbl 1365.93302 · doi:10.1109/TAC.2005.846556
[18] DOI: 10.1080/00207179.2011.653832 · Zbl 1256.93081 · doi:10.1080/00207179.2011.653832
[19] DOI: 10.2514/2.4747 · doi:10.2514/2.4747
[20] DOI: 10.1109/MCS.2010.939135 · Zbl 1395.93271 · doi:10.1109/MCS.2010.939135
[21] Speich J.E., Medical robotics (2004)
[22] DOI: 10.1049/iet-cta.2012.0823 · doi:10.1049/iet-cta.2012.0823
[23] DOI: 10.1016/j.conengprac.2010.06.011 · doi:10.1016/j.conengprac.2010.06.011
[24] DOI: 10.1115/1.2745849 · doi:10.1115/1.2745849
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.