×

Mechanical feedback in seashell growth and form. (English) Zbl 1395.92019

Summary: Mollusc seashells grow through the local deposition and calcification of material at the shell opening by a soft and thin organ called the mantle. Through this process, a huge variety of shell structures are formed. Previous models have shown that these structural patterns can largely be understood by examining the mechanical interaction between the deformable mantle and the rigid shell aperture to which it adheres. In this paper we extend this modelling framework in two distinct directions. For one, we incorporate a mechanical feedback in the growth of the mollusc. Second, we develop an initial framework to couple the two primary and orthogonal modes of pattern formation in shells, which are termed antimarginal and commarginal ornamentation. In both cases we examine the change in shell morphology that occurs due to the different mechanical influences and evaluate the hypotheses in light of the fossil record.

MSC:

92C15 Developmental biology, pattern formation
74L15 Biomechanical solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Checa, A., A model for the morphogenesis of ribs in ammonites inferred from associated microsculptures, Palaeontology, 37, 863-888, (1994)
[2] Chirat, R.; Moulton, D. E.; Goriely, A., Mechanical basis of morphogenesis and convergent evolution of spiny seashells, Proc. Natl Acad. Sci. USA, 110, 6015-6020, (2013) · doi:10.1073/pnas.1220443110
[3] Dagys, A. S.; Bucher, H.; Weitschat, W., Intraspecific variation of parasibirites kolymensis bychkov (ammonoidea) from the lower triassic (spathian) of arctic asia, Mitteilungen aus dem Geologisch-Paläontologischen der Institut Universität Hamburg, 83, 163-178, (1999)
[4] Erlich, A.
[5] Erlich, A.; Moulton, D. E.; Goriely, A.; Chirat, R., Morphomechanics and developmental constraints in the evolution of ammonites shell form, J. Exp. Zool. B, 326, 437-450, (2016) · doi:10.1002/jez.b.22716
[6] Howell, P.; Kozyreff, G.; Ockendon, J., Applied solid mechanics, 43, (2009), Cambridge University Press: Cambridge University Press, Cambridge, UK · Zbl 1153.74003
[7] Hutson, M. S.; Ma, X., Mechanical aspects of developmental biology: perspectives on growth and form in the (post)-genomic age, Phys. Biol., 5, 015001, (2008) · doi:10.1088/1478-3975/5/1/015001
[8] Mammoto, T.; Mammoto, A.; Ingber, D. E., Mechanobiology and developmental control, Ann. Rev. Cell Dev. Biol., 29, 27-61, (2013) · doi:10.1146/annurev-cellbio-101512-122340
[9] Moulton, D. E.; Goriely, A.; Chirat, R., Mechanical growth and morphogenesis of seashells, J. Theoret. Biol., 311, 69-79, (2012) · Zbl 1337.92024 · doi:10.1016/j.jtbi.2012.07.009
[10] Moulton, D. E.; Goriely, A.; Chirat, R., The morpho-mechanical basis of ammonite form, J. Theoret. Biol., 364, 220-230, (2015) · Zbl 1405.92026 · doi:10.1016/j.jtbi.2014.09.021
[11] Moulton, D. E.; Lessinnes, T.; Goriely, A., Morphoelastic rods. Part 1: a single growing elastic rod, J. Mech. Phys. Solids, 61, 398-427, (2012) · doi:10.1016/j.jmps.2012.09.017
[12] Nelson, C. M.; Jean, R. P.; Tan, J. L.; Liu, W. F.; Sniadecki, N. J.; Spector, A. A.; Chen, C. S., Emergent patterns of growth controlled by multicellular form and mechanics, Proc. Natl Acad. Sci. USA, 102, 11594-11599, (2005) · doi:10.1073/pnas.0502575102
[13] O’Keeffe, S. G.; Moulton, D. E.; Waters, S. L.; Goriely, A., Growth-induced axial buckling of a slender elastic filament embedded in an isotropic elastic matrix, Intl J. Non-Linear Mech., 56, 94-104, (2013) · doi:10.1016/j.ijnonlinmec.2013.04.017
[14] Raup, D. M., Geometric analysis of shell coiling: coiling in ammonoids, J. Paleontol., 41, 43-65, (1967)
[15] Rodriguez, E. K.; Hoger, A.; Mcculloch, A. D., Stress-dependent finite growth in soft elastic tissues, J. Biomech., 27, 455-467, (1994) · doi:10.1016/0021-9290(94)90021-3
[16] Simkiss, K.; Wilbur, K. M., Biomineralization, (1989), Academic Press: Academic Press, New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.