×

zbMATH — the first resource for mathematics

Image restoration with mixed or unknown noises. (English) Zbl 1380.94021

MSC:
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
90C25 Convex programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] F. J. Anscombe, The transformation of Poisson, binomial and negative-binomial data, Biometrika, 35 (1948), pp. 246–254. · Zbl 0032.03702
[2] G. Aubert and J.-F. Aujol, A variational approach to removing multiplicative noise, SIAM J. Appl. Math., 68 (2008), pp. 925–946. · Zbl 1151.68713
[3] L. Bar, N. Kiryati, and N. Sochen, Image deblurring in the presence of impulse noise, Internat. J. Comput. Vis., 70 (2006), pp. 279–298. · Zbl 1119.68520
[4] L. Bar, N. Sochen, and N. Kiryati, Image deblurring in the presence of salt-and-pepper noise, in Scale Space and PDE Methods in Computer Vision, Lecture Notes in Comput. Sci. 3459, Springer-Verlag, Berlin, 2005, pp. 107–118. · Zbl 1119.68520
[5] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), pp. 183–202. · Zbl 1175.94009
[6] J.-F. Cai, B. Dong, S. Osher, and Z. Shen, Image restoration: Total variation, wavelet frames, and beyond, J. Amer. Math. Soc., 25 (2012), pp. 1033–1089. · Zbl 1277.35019
[7] J.-F. Cai, S. Osher, and Z. Shen, Linearized Bregman iterations for frame-based image deblurring, SIAM J. Imaging Sci., 2 (2009), pp. 226–252. · Zbl 1175.94010
[8] J.-F. Cai, S. Osher, and Z. Shen, Split Bregman methods and frame based image restoration, Multiscale Model. Simul., 8 (2009), pp. 337–369. · Zbl 1189.94014
[9] T. Chan, Y. Wang, and H. Zhou, Denoising natural color photos in digital photography, Preprint, 2007.
[10] T. Chen and H. R. Wu, Adaptive impulse detection using center-weighted median filters, IEEE Trans. Signal Process. Lett., 8 (2001), pp. 1–3.
[11] I. Daubechies, B. Han, A. Ron, and Z. Shen, Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal., 14 (2003), pp. 1–46. · Zbl 1035.42031
[12] B. Dong, H. Ji, J. Li, Z. Shen, and Y. Xu, Wavelet frame based blind image inpainting, Appl. Comput. Harmon. Anal., 32 (2012), pp. 268–279. · Zbl 1261.94006
[13] B. Dong and Z. Shen, MRA-based wavelet frames and applications, in The Summer Program on “The Mathematics of Image Processing,” IAS Lecture Notes Ser. 19, Park City Mathematics Institute, Salt Lake City, UT, 2010.
[14] Y. Dong, R. F. Chan, and S. Xu, A detection statistic for random-valued impulse noise, IEEE Trans. Image Process., 16 (2007), pp. 1112–1120.
[15] D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximation, Comput. Math. Appl., 2 (1976), pp. 17–40. · Zbl 0352.65034
[16] R. Glowinski and A. Marrocco, Sur l’approximation par éléments finis d’ordre un, et la resolution par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires, Revue Française Automat. Informat. Recherche Opérationnelle RAIRO Analyse Numér., 9 (1975), pp. 41–76.
[17] T. Goldstein and S. Osher, The split Bregman algorithm for L1-regularized problems, SIAM J. Imaging Sci., 2 (2009), pp. 323–343. · Zbl 1177.65088
[18] H. Ji, C. Liu, Z. Shen, and Y. Xu, Robust video denoising using low rank matrix completion, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, 2010, pp. 1791–1798.
[19] H. Ji, Z. Shen, and Y. Xu, Wavelet frame based image restoration with missing/damaged pixels, East Asia J. Appl. Math., 1 (2011), pp. 108–131. · Zbl 1286.94017
[20] T. Le, R. Chartrand, and T. J. Asaki, A variational approach to reconstructing images corrupted by poisson noise, J. Math. Imaging Vis., 27 (2007), pp. 257–263.
[21] F. Luisier, Image denoising in mixed Poisson-Gaussian noise, IEEE Trans. Image Process., 20 (2011), pp. 696–707. · Zbl 1372.94168
[22] F. Murtagh, J.-L. Starck, and A. Bijaoui, Image restoration with noise suppression using a multiresolution support, Astron. Astrophys. Supplement Series, 112 (1995), pp. 179–189.
[23] A. Nemirovski and D. Yudin, Problem Complexity and Method Efficiency in Optimization, Wiley, New York, 1983.
[24] Y. Nesterov, A method of solving a convex programming problem with convergence rate \({O}(1/k^2)\), Soviet Math. Dokl., 27 (1983), pp. 372–376. · Zbl 0535.90071
[25] Y. Nesterov, Smooth minimization of non-smooth functions, Math. Program., 103 (2005), pp. 127–152. · Zbl 1079.90102
[26] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli, Image denoising using scale mixtures of Gaussians in the wavelet domain, IEEE Trans. Image Process., 12 (2003), pp. 1338–1351. · Zbl 1279.94028
[27] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970. · Zbl 0193.18401
[28] R. T. Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math. Oper. Res., 1 (1976), pp. 97–116. · Zbl 0402.90076
[29] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976), pp. 877–898. · Zbl 0358.90053
[30] A. Ron and Z. Shen, Affine systems in \(l_2(\mathbb{R}^d)\): The analysis of the analysis operator, J. Funct. Anal., 148 (1997), pp. 408–447. · Zbl 0891.42018
[31] S. Setzer, G. Steidl, and T. Teuber, Deblurring Poissonian images by split Bregman techniques, J. Vis. Commun. Image Rep., 21 (2010), pp. 193–199.
[32] Z. Shen, Wavelet frames and image restorations, in Proceedings of the International Congress of Mathematicians, Vol. IV, Rajendra Bhatia, ed., Hindustan Book Agency, Hyderabad, India, 2010, pp. 2834–2863. · Zbl 1228.42036
[33] Z. Shen, K.-C. Toh, and S. Yun, An accelerated proximal gradient algorithm for frame-based image restoration via the balanced approach, SIAM J. Imaging Sci., 4 (2011), pp. 573–596. · Zbl 1219.94012
[34] J. Shi and S. Osher, A nonlinear inverse scale space method for a convex multiplicative noise model, SIAM J. Imaging Sci., 1 (2008), pp. 294–321. · Zbl 1185.94018
[35] G. Steidl and T. Teuber, Removing multiplicative noise by Douglas-Rachford splitting, J. Math. Imaging Vis., 36 (2010), pp. 168–184. · Zbl 1287.94016
[36] S. Yun and H. Woo, A new multiplicative denoising variational model based on m-th root transformation. IEEE Trans. Image Process., 21 (2012), pp. 2523–2533. · Zbl 1373.94476
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.