Adamaszek, Michał; Adams, Henry; Gasparovic, Ellen; Gommel, Maria; Purvine, Emilie; Sazdanovic, Radmila; Wang, Bei; Wang, Yusu; Ziegelmeier, Lori On homotopy types of Vietoris-Rips complexes of metric gluings. (English) Zbl 07270220 J. Appl. Comput. Topol. 4, No. 3, 425-454 (2020). Reviewer: Yuichi Ike (Kawasaki) MSC: 55N31 55U10 68T09 55P15 05E45 PDF BibTeX XML Cite \textit{M. Adamaszek} et al., J. Appl. Comput. Topol. 4, No. 3, 425--454 (2020; Zbl 07270220) Full Text: DOI
Gasparovic, Ellen; Gommel, Maria; Purvine, Emilie; Sazdanovic, Radmila; Wang, Bei; Wang, Yusu; Ziegelmeier, Lori The relationship between the intrinsic Čech and persistence distortion distances for metric graphs. (English) Zbl 07161630 J. Comput. Geom. 10, No. 1, 477-499 (2019). MSC: 68U05 PDF BibTeX XML Cite \textit{E. Gasparovic} et al., J. Comput. Geom. 10, No. 1, 477--499 (2019; Zbl 07161630) Full Text: Link
Adamaszek, Michał; Adams, Henry; Gasparovic, Ellen; Gommel, Maria; Purvine, Emilie; Sazdanovic, Radmila; Wang, Bei; Wang, Yusu; Ziegelmeier, Lori Vietoris-Rips and Čech complexes of metric gluings. (English) Zbl 07236407 Speckmann, Bettina (ed.) et al., 34th international symposium on computational geometry, SoCG 2018, June 11–14, 2018, Budapest, Hungary. Wadern: Schloss Dagstuhl – Leibniz Zentrum für Informatik (ISBN 978-3-95977-066-8). LIPIcs – Leibniz International Proceedings in Informatics 99, Article 3, 15 p. (2018). MSC: 68U05 PDF BibTeX XML Cite \textit{M. Adamaszek} et al., LIPIcs -- Leibniz Int. Proc. Inform. 99, Article 3, 15 p. (2018; Zbl 07236407) Full Text: DOI
Gasparovic, Ellen; Gommel, Maria; Purvine, Emilie; Sazdanovic, Radmila; Wang, Bei; Wang, Yusu; Ziegelmeier, Lori A complete characterization of the one-dimensional intrinsic Čech persistence diagrams for metric graphs. (English) Zbl 1422.55037 Chambers, Erin Wolf (ed.) et al., Research in computational topology. Based on the first workshop for women in computational topology, Minneapolis, MN, USA, August 2016. Cham: Springer; Minneapolis, MN: Institute for Mathematics and its Applications (IMA). Assoc. Women Math. Ser. 13, 33-56 (2018). Reviewer: Henry Adams (Fort Collins) MSC: 55U10 05E45 68U05 55N35 51F99 PDF BibTeX XML Cite \textit{E. Gasparovic} et al., Assoc. Women Math. Ser. 13, 33--56 (2018; Zbl 1422.55037) Full Text: DOI