×

Clifford analysis and its applications I: Representations of Laplace operators. Regularity criteria. Integral representations of Cauchy-Green type. (English) Zbl 0942.30028

This article is the first part of a review devoted to Clifford analysis and its applications. It improves the Clifford analysis as presented by F. Brackx, R. Delanghe and F. Sommen [Clifford analysis (1982; Zbl 0529.30001)] removing some serious shortcomings of the original presentation. The article contains many examples, it is well written and worth to be read by mathematicians and physicists.

MSC:

30G35 Functions of hypercomplex variables and generalized variables
15A66 Clifford algebras, spinors

Citations:

Zbl 0529.30001
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. P. Burlakov, ”Clifford structure on manifolds”, In:Itogi Nauki i Techniki, Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. Geometriya-3, Vol. 30, VINITI, Moscow (1995), pp. 205–257.
[2] M. P. Burlakov,Differential Clifford algebras of space-time, Deposited at the All-Russian Institute for Scientific and Technical Information (1984).
[3] M. P. Burlakov and V. V. Pokazeev, ”On some integral representations of solutions for spin equations in field theory,” In:Gravitation and Relativity Theory, Vol. 29, Kazan (1992), pp. 23–31. · Zbl 0890.53070
[4] M. P. Burlakov and V. V. Pokazcev, ”Algebra of differential forms in Kaluza space,” In:Differential Geometry of the Varieties of Figures, Vol. 25, Kaliningrad (1994), pp. 23–28.
[5] M. P. Burlakov, V. V. Pokazeev and L. E. Freidenzon, ”Intergral representations of functions with values in Dirac algebra,” In:Current Questions in the Theory of Boundary Problems and Their Applications, Cheboksary (1988). pp. 18–22.
[6] M. P. Burlakov, V. V. Pokazeev and L. E. Freidenzon.Clifford analysis I. Clifford {\(\Delta\)}-algebras, Deposited at the All-Russian Institute for Scientific and Technical Information Groznyi (1988).
[7] M. P. Burlakov, V. V. Pokazeev and L. E. Freidenson,Clifford analysis II. Integral representations of functions with values in Clifford algebra, Deposited at the All-Russian Institute for Scientific and Technical Information, Groznyi (1988).
[8] V. V. Vishnevskii, A. P. Shirokov and V. V. Shurygin,Spaces over Algebras, Kazan Univ. Press, Kazan (1985). · Zbl 0592.53001
[9] M. Karoubi,K-Theory. Introduction [Russian translation], Mir, Moscow (1981).
[10] S. P. Kuznetsov, ”OnB-sets in Clifford algebras,” In:Investigations on Boundary Problems and Their Applications, Cheboksary (1992), pp. 91–98.
[11] S. P. Kuznetsov and V. V. Mochalov,Internal automorphisms of Clifford algebras and strong regular functions, Deposited at the All-Russian Institute for Scientific and Technical Information, Cheboksary (1991).
[12] L. Raider,Quantum Field Theory [Russian translation], Mir, Moscow (1987).
[13] B. A. Rozenfeld,Non-Euclidean Geometries [in Russian], Gostekhizdat, Moscow (1954).
[14] P. Bosshard,Die Cliffordschen Zahlen, ihre Algebra und ihre Funktionentheorie [Thesis], Universität Zürich (1940). · Zbl 0026.29301
[15] F. Brackx, ”Integral representations and related series expansion for nullsolution of generalized Cauchy-Riemann systems in Euclidean space,”Wiss. Beitr. M. Luther Univ. Halle-Wittenberg, M, No. 35, 100 (1984).
[16] F. Brackx, R. Delanghe, and F. Sommen,Clifford Analysis, Pitnam Publ. Inc., Boston-London-Melbourne (1982).
[17] W. Clifford,Collected Mathematical Papers, Chelsea (reprint) (1968).
[18] Clifford Algebras and Their Applications in Mathematical Physics.Proc. 3rd Int. Conf., Deinze 1993 (F. Brackx, R. Delanghe, and H. Serras, Eds.)Fundamental Theories of Physics, Vol. 183, Kluwer Acad. Publ. Group, Dordrecht (1993).
[19] R. Delanghe and F. Brackx ”Runges theorem in hypercomplex function theory,”J. Approx. Theory,29, No. 3, 200–211 (1987). · Zbl 0454.30040 · doi:10.1016/0021-9045(80)90124-0
[20] R. Delanghe and F. Brackx, ”Duality in hypercomplex function theory,”J. Funct. Anal. 37, No. 2, 164–181 (1980). · Zbl 0446.46029 · doi:10.1016/0022-1236(80)90039-7
[21] P. A. M. Dirac, ”The quantum theory of the electron”Proc. Royal Soc. A 117, 610–624 (1928). · JFM 54.0973.01 · doi:10.1098/rspa.1928.0023
[22] R. Fueter, ”Zur Theorie der regularen Funktionen einer Quaternionenvariablen,”Monats. Math. Phys.,43, 69–74 (1936). · Zbl 0013.40702 · doi:10.1007/BF01707588
[23] B. Goldschmidt, ”Existence theorems for overdetermined systems of partial differential equations of first order,”Math. Nach. 116, 233–250 (1984). · Zbl 0576.35089 · doi:10.1002/mana.19841160117
[24] H. Grassman,Gesammelte Mathematishe und Physikalishe Werke. Bd. 1, Tl.1–2, Lpz. (1894–96).
[25] H. Hafeli, ”Quaternionnengeometrie und das Abblidungsproblem der regularen Quaternionenfunktionen,”Commun. Math. Helv.,17, No. 2, 135–164 (1944). · Zbl 0060.24514 · doi:10.1007/BF02566239
[26] P. Lounesto, ”Spinor valued regular functions,”Contemp. Math.,11, 155–175 (1982). · Zbl 0525.30038
[27] W. Nef, ”Die Funktionentheorie der partiellen Differentialgleichungen zweiter Ordnung (Hypercomplex Funktionentheorie)”.Bull. Soc. Fribourge Sci. Nat. 37, 348–375 (1944).
[28] W. Pauli, ”Zur Quantenmechanik des magnetischen Electrons”,Z. Phys.,43, 601–625 (1927). · JFM 53.0858.02 · doi:10.1007/BF01397326
[29] J. Ryan, ”Extensions of Clifford analysis to complex. finite dimensional associative algebras with identity”.Proc. Roy. Irish. Acad.,A84, No 1, 37–50 (1984). · Zbl 0557.30043
[30] J. Ryan, ”Applications of Clifford analysis to axially symmetric partial differential equations,”Complex Variables: Theory Appl.,16, Nos. 2-3, 137–151 (1991).
[31] F. Sommen, ”Monogenic functions on surfaces,”J. Reine Angew. Math., 145–161 (1985). · Zbl 0557.30042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.