×

zbMATH — the first resource for mathematics

Diagrammar in an extended theory of gravity. (English) Zbl 1372.83024
Summary: We show how the \(S\)-matrix of an extended theory of gravity defined by its three-point amplitudes can be constructed by demanding factorisation. The resultant \(S\)-matrix has tree amplitudes obeying the same soft singularity theorems as Einstein gravity including the sub-sub-leading terms.

MSC:
83C47 Methods of quantum field theory in general relativity and gravitational theory
81U20 \(S\)-matrix theory, etc. in quantum theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] ’t Hooft, G.; Veltman, M. J.G., NATO Sci. Ser. B, 4, 177, (1974)
[2] Eden, R. J.; Landshoff, P. V.; Olive, D. I.; Polkinghorne, J. C., The analytic S matrix, (1966), Cambridge University Press · Zbl 0139.46204
[3] Bern, Z.; Dixon, L. J.; Dunbar, D. C.; Kosower, D. A., Nucl. Phys. B, 425, 217, (1994)
[4] Bern, Z.; Dixon, L. J.; Dunbar, D. C.; Kosower, D. A., Nucl. Phys. B, 435, 59, (1995)
[5] Britto, R.; Cachazo, F.; Feng, B.; Witten, E., Phys. Rev. Lett., 94, (2005)
[6] Arkani-Hamed, N.; Trnka, J., J. High Energy Phys., 1410, (2014)
[7] Arkani-Hamed, N.; Rodina, L.; Trnka, J.
[8] Bedford, J.; Brandhuber, A.; Spence, B. J.; Travaglini, G., Nucl. Phys. B, 721, 98, (2005)
[9] Cachazo, F.; Svrcek, P.
[10] Bjerrum-Bohr, N. E.J.; Dunbar, D. C.; Ita, H.; Perkins, W. B.; Risager, K., J. High Energy Phys., 0601, (2006)
[11] Benincasa, P.; Cachazo, F.
[12] Benincasa, P.; Boucher-Veronneau, C.; Cachazo, F., J. High Energy Phys., 0711, (2007)
[13] Risager, K., J. High Energy Phys., 0512, (2005)
[14] van Nieuwenhuizen, P.; Wu, C. C., J. Math. Phys., 18, 182, (1977)
[15] Grisaru, M. T., Phys. Lett. B, 66, 75, (1977)
[16] Tomboulis, E., Phys. Lett. B, 67, 417, (1977)
[17] Cohen, T.; Elvang, H.; Kiermaier, M., J. High Energy Phys., 1104, (2011)
[18] Dunbar, D. C.; Jehu, G. R.; Perkins, W. B.
[19] Bern, Z.; Chi, H. H.; Dixon, L.; Edison, A.
[20] Dunbar, D. C.; Turner, N. W.P., Class. Quantum Gravity, 20, 2293, (2003) · Zbl 1027.83521
[21] Broedel, J.; Dixon, L. J., J. High Energy Phys., 1210, (2012)
[22] Kawai, H.; Lewellen, D. C.; Tye, S. H.H., Nucl. Phys. B, 269, 1, (1986)
[23] Weinberg, Steven, Phys. Rev., 140, B516-B524, (1965)
[24] White, C. D., J. High Energy Phys., 1105, (2011)
[25] Cachazo, F.; Strominger, A.
[26] He, T.; Lysov, V.; Mitra, P.; Strominger, A., J. High Energy Phys., 1505, (2015)
[27] Bern, Z.; Davies, S.; Nohle, J., Phys. Rev. D, 90, 8, (2014)
[28] Broedel, J.; de Leeuw, M.; Plefka, J.; Rosso, M., Phys. Rev. D, 90, 6, (2014)
[29] Bondi, H.; van der Burg, M. G.J.; Metzner, A. W.K.; Sachs, R. K., Proc. R. Soc. Lond. Ser. A, Proc. R. Soc. Lond. Ser. A, 270, 103, (1962)
[30] He, S.; Huang, Y.t.; Wen, C., J. High Energy Phys., 1412, (2014)
[31] Alston, S. D.; Dunbar, D. C.; Perkins, W. B., Phys. Rev. D, 86, (2012)
[32] Bianchi, M.; He, S.; Huang, Y.t.; Wen, C., Phys. Rev. D, 92, 6, (2015)
[33] Fulling, S. A.; King, R. C.; Wybourne, B. G.; Cummins, C. J., Class. Quantum Gravity, 9, 1151, (1992)
[34] Hawking, S. W.; Perry, M. J.; Strominger, A., Phys. Rev. Lett., 116, 23, (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.