×

Effects of radiative heat transfer on the structure of turbulent supersonic channel flow. (English) Zbl 1241.76291

Summary: The interaction between turbulence in a minimal supersonic channel and radiative heat transfer is studied using large-eddy simulation. The working fluid is pure water vapour with temperature-dependent specific heats and molecular transport coefficients. Its line spectra properties are represented with a statistical narrow-band correlated-k model. A grey gas model is also tested. The parallel no-slip channel walls are treated as black surfaces concerning thermal radiation and are kept at a constant temperature of 1000 K. Simulations have been performed for different optical thicknesses (based on the Planck mean absorption coefficient) and different Mach numbers. Results for the mean flow variables, Reynolds stresses and certain terms of their transport equations indicate that thermal radiation effects counteract compressibility (Mach number) effects. An analysis of the total energy balance reveals the importance of radiative heat transfer, compared to the turbulent and mean molecular heat transport.

MSC:

76F50 Compressibility effects in turbulence
76J20 Supersonic flows
80A20 Heat and mass transfer, heat flow (MSC2010)
78A40 Waves and radiation in optics and electromagnetic theory
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] DOI: 10.1063/1.1586271 · Zbl 1186.76355 · doi:10.1063/1.1586271
[2] DOI: 10.1063/1.1350896 · Zbl 1184.76530 · doi:10.1063/1.1350896
[3] DOI: 10.1016/0021-9991(92)90324-R · Zbl 0759.65006 · doi:10.1016/0021-9991(92)90324-R
[4] DOI: 10.1088/1468-5248/2/1/001 · Zbl 1001.76510 · doi:10.1088/1468-5248/2/1/001
[5] DOI: 10.1016/j.ijthermalsci.2005.02.010 · doi:10.1016/j.ijthermalsci.2005.02.010
[6] DOI: 10.1007/978-1-4020-5152-2_83 · doi:10.1007/978-1-4020-5152-2_83
[7] DOI: 10.1017/S0022112091002033 · Zbl 0721.76040 · doi:10.1017/S0022112091002033
[8] Gardiner, Combustion Chemistry (1984) · doi:10.1007/978-1-4684-0186-8
[9] DOI: 10.1016/j.combustflame.2006.09.008 · doi:10.1016/j.combustflame.2006.09.008
[10] DOI: 10.1017/S0022112004009371 · Zbl 1066.76035 · doi:10.1017/S0022112004009371
[11] DOI: 10.1017/S0022112095004599 · Zbl 0857.76036 · doi:10.1017/S0022112095004599
[12] DOI: 10.1006/jcph.1995.1151 · Zbl 0938.76097 · doi:10.1006/jcph.1995.1151
[13] DOI: 10.1115/1.3085875 · doi:10.1115/1.3085875
[14] DOI: 10.1017/S0022112095004587 · Zbl 0960.76517 · doi:10.1017/S0022112095004587
[15] DOI: 10.1016/j.combustflame.2008.10.006 · doi:10.1016/j.combustflame.2008.10.006
[16] DOI: 10.1016/j.pecs.2006.11.002 · doi:10.1016/j.pecs.2006.11.002
[17] DOI: 10.1016/j.jqsrt.2009.06.014 · doi:10.1016/j.jqsrt.2009.06.014
[18] Adams, Direct and Large-Eddy Simulation III pp 201– (1999) · doi:10.1007/978-94-015-9285-7_17
[19] DOI: 10.1016/j.proci.2004.08.138 · doi:10.1016/j.proci.2004.08.138
[20] DOI: 10.1016/0021-9991(80)90033-9 · Zbl 0425.65038 · doi:10.1016/0021-9991(80)90033-9
[21] DOI: 10.1016/S0020-7225(98)00053-6 · Zbl 1210.85010 · doi:10.1016/S0020-7225(98)00053-6
[22] DOI: 10.1063/1.869867 · Zbl 1147.76506 · doi:10.1063/1.869867
[23] DOI: 10.1016/0017-9310(96)00129-9 · doi:10.1016/0017-9310(96)00129-9
[24] DOI: 10.1016/S0045-7930(00)00002-5 · Zbl 0991.76056 · doi:10.1016/S0045-7930(00)00002-5
[25] Poitou, Proceedings of Eurotherm83 – Computational Thermal Radiation in Participating Media III (2009)
[26] Modest, Radiative Heat Transfer (2003)
[27] DOI: 10.1016/S0017-9310(99)00343-9 · Zbl 0967.80509 · doi:10.1016/S0017-9310(99)00343-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.