zbMATH — the first resource for mathematics

Hadronic production of squark-squark pairs: the electroweak contributions. (English) Zbl 1291.81451
Summary: We compute the electroweak (EW) contributions to squark-squark pair production processes at the LHC within the framework of the Minimal Supersymmetric Standard Model (MSSM). Both tree-level EW contributions, of \(\mathcal{O}\left( {{\alpha_s}\alpha + {\alpha^2}} \right)\), and next-to-leading order (NLO) EW corrections, of \(\mathcal{O}\left( {\alpha_s^2\alpha } \right)\), are calculated. Depending on the flavor and chirality of the produced squarks, many interferences between EW-mediated and QCD-mediated diagrams give non-zero contributions at tree-level and NLO. We discuss the computational techniques and present an extensive numerical analysis for inclusive squark-squark production as well as for subsets and single processes. While the tree-level EW contributions to the integrated cross sections can reach the 20% level, the NLO EW corrections typically lower the LO prediction by a few percent.
81V22 Unified quantum theories
81T60 Supersymmetric field theories in quantum mechanics
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
Full Text: DOI
[1] Wess, J.; Zumino, B., Supergauge transformations in four-dimensions, Nucl. Phys., B 70, 39, (1974)
[2] WMAP collaboration; Dunkley, J.; etal., Five-year wilkinson microwave anisotropy probe (WMAP) observations: likelihoods and parameters from the WMAP data, Astrophys. J. Suppl., 180, 306, (2009)
[3] Nilles, HP, Supersymmetry, supergravity and particle physics, Phys. Rept., 110, 1, (1984)
[4] Haber, HE; Kane, GL, The search for supersymmetry: probing physics beyond the standard model, Phys. Rept., 117, 75, (1985)
[5] Barbieri, R., Looking beyond the standard model: the supersymmetric option, Riv. Nuovo Cim., 11, 1, (1988)
[6] Ellis, JR; Heinemeyer, S.; Olive, KA; Weber, AM; Weiglein, G., The supersymmetric parameter space in light of B\^{}{−} physics observables and electroweak precision data, JHEP, 08, 083, (2007)
[7] Buchmueller, O.; etal., Prediction for the lightest Higgs boson mass in the CMSSM using indirect experimental constraints, Phys. Lett., B 657, 87, (2007)
[8] Buchmueller, O.; etal., Likelihood functions for supersymmetric observables in frequentist analyses of the CMSSM and NUHM1, Eur. Phys. J., C 64, 391, (2009)
[9] Muon g-2 collaboration; Bennett, GW; etal., Measurement of the positive muon anomalous magnetic moment to 0.7 ppm, Phys. Rev. Lett., 89, 101804, (2002)
[10] Muon g-2 collaboration; Bennett, GW; etal., Measurement of the negative muon anomalous magnetic moment to 0.7-ppm, Phys. Rev. Lett., 92, 161802, (2004)
[11] Buchmueller, O.; etal., Predictions for supersymmetric particle masses in the CMSSM using indirect experimental and cosmological constraints, JHEP, 09, 117, (2008)
[12] CDF collaboration; Portell, X., Searches for squarks and gluinos at CDF and D0 detectors, J. Phys. Conf. Ser., 110, 072035, (2008)
[13] Jong, P., Prospects for SUSY searches in CMS and ATLAS, AIP Conf. Proc., 1078, 21, (2009)
[14] Harrison, PR; Llewellyn Smith, CH, Hadroproduction of supersymmetric particles, Nucl. Phys., B 213, 223, (1983)
[15] Reya, E.; Roy, DP, Supersymmetric particle production at \( p\bar{p} \) collider energies, Phys. Rev., D 32, 645, (1985)
[16] Dawson, S.; Eichten, E.; Quigg, C., Search for supersymmetric particles in hadron hadron collisions, Phys. Rev., D 31, 1581, (1985)
[17] Baer, H.; Tata, X., Component formulae for hadroproduction of left-handed and right-handed squarks, Phys. Lett., B 160, 159, (1985)
[18] Beenakker, W.; Hopker, R.; Spira, M.; Zerwas, PM, Squark and gluino production at hadron colliders, Nucl. Phys., B 492, 51, (1997)
[19] Beenakker, W.; Krämer, M.; Plehn, T.; Spira, M.; Zerwas, PM, Stop production at hadron colliders, Nucl. Phys., B 515, 3, (1998)
[20] Langenfeld, U.; Moch, S-O, Higher-order soft corrections to squark hadro-production, Phys. Lett., B 675, 210, (2009)
[21] Kulesza, A.; Motyka, L., Threshold resummation for squark-antisquark and gluino-pair production at the LHC, Phys. Rev. Lett., 102, 111802, (2009)
[22] Kulesza, A.; Motyka, L., Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC, Phys. Rev., D 80, 095004, (2009)
[23] Beenakker, W.; etal., Soft-gluon resummation for squark and gluino hadroproduction, JHEP, 12, 041, (2009)
[24] Bornhauser, S.; Drees, M.; Dreiner, HK; Kim, JS, Electroweak contributions to squark pair production at the LHC, Phys. Rev., D 76, 095020, (2007)
[25] Arhrib, A.; Benbrik, R.; Cheung, K.; Yuan, T-C, Higgs boson enhancement effects on squark-pair production at the LHC, JHEP, 02, 048, (2010)
[26] Bozzi, G.; Fuks, B.; Klasen, M., Non-diagonal and mixed squark production at hadron colliders, Phys. Rev., D 72, 035016, (2005)
[27] Alan, AT; Cankocak, K.; Demir, DA, Squark pair production in the MSSM with explicit CP-violation, Phys. Rev., D 75, 095002, (2007)
[28] Hollik, W.; Kollar, M.; Trenkel, MK, Hadronic production of top-squark pairs with electroweak NLO contributions, JHEP, 02, 018, (2008)
[29] Hollik, W.; Mirabella, E., Squark anti-squark pair production at the LHC: the electroweak contribution, JHEP, 12, 087, (2008)
[30] Hollik, W.; Mirabella, E.; Trenkel, MK, Electroweak contributions to squark-gluino production at the LHC, JHEP, 02, 002, (2009)
[31] Beccaria, M.; Macorini, G.; Panizzi, L.; Renard, FM; Verzegnassi, C., Stop-antistop and sbottom-antisbottom production at LHC: a one-loop search for model parameters dependence, Int. J. Mod. Phys., A 23, 4779, (2008)
[32] Mirabella, E., NLO electroweak contributions to gluino pair production at hadron colliders, JHEP, 12, 012, (2009)
[33] Hahn, T., Generating Feynman diagrams and amplitudes with feynarts 3, Comput. Phys. Commun., 140, 418, (2001)
[34] Hahn, T.; Schappacher, C., The implementation of the minimal supersymmetric standard model in feynarts and formcalc, Comput. Phys. Commun., 143, 54, (2002)
[35] Hahn, T.; Rauch, M., News from formcalc and looptools, Nucl. Phys. Proc. Suppl., 157, 236, (2006)
[36] Hollik, W.; Stöckinger, D., Regularization and supersymmetry-restoring counterterms in supersymmetric QCD, Eur. Phys. J., C 20, 105, (2001)
[37] Baur, U.; Keller, S.; Wackeroth, D., Electroweak radiative corrections to W boson production in hadronic collisions, Phys. Rev., D 59, 013002, (1999)
[38] Hollik, W.; Kasprzik, T.; Kniehl, BA, Electroweak corrections to W-boson hadroproduction at finite transverse momentum, Nucl. Phys., B 790, 138, (2008)
[39] LHC/LC Study Group collaboration; Weiglein, G.; etal., Physics interplay of the LHC and the ILC, Phys. Rept., 426, 47, (2006)
[40] Aguilar-Saavedra, JA; etal., Supersymmetry parameter analysis: SPA convention and project, Eur. Phys. J., C 46, 43, (2006)
[41] Tevatron Electroweak Working Group collaboration, Combination of CDF and D0 Results on the Mass of the Top Quark, arXiv:0903.2503 [SPIRES].
[42] Allanach, BC; etal., The snowmass points and slopes: benchmarks for SUSY searches, Eur. Phys. J., C 25, 113, (2002)
[43] Allanach, BC, SOFTSUSY: A C++ program forcalculatingsupersymmetricspectra, Comput. Phys. Commun., 143, 305, (2002)
[44] Hollik, W.; Rzehak, H., The sfermion mass spectrum of the MSSM at the one-loop level, Eur. Phys. J., C 32, 127, (2003)
[45] Martin, AD; Roberts, RG; Stirling, WJ; Thorne, RS, Parton distributions incorporating QED contributions, Eur. Phys. J., C 39, 155, (2005)
[46] Dittmaier, S.; Krämer, M., Electroweak radiative corrections to W-boson production at hadron colliders, Phys. Rev., D 65, 073007, (2002)
[47] Martin, AD; Roberts, RG; Stirling, WJ; Thorne, RS, Physical gluons and high E(\(T\)) jets, Phys. Lett., B 604, 61, (2004)
[48] Denner, A., Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortschr. Phys., 41, 307, (1993)
[49] Catani, S.; Seymour, MH, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys., B 485, 291, (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.