×

A space-jump derivation for non-local models of cell-cell adhesion and non-local chemotaxis. (English) Zbl 1392.92012

Summary: Cellular adhesion provides one of the fundamental forms of biological interaction between cells and their surroundings, yet the continuum modelling of cellular adhesion has remained mathematically challenging. In [“A continuum approach to modelling cell-cell adhesion”, J. Theoret. Biol. 243, No. 1, 98–113 (2006)], N. J. Armstrong et al. proposed a mathematical model in the form of an integro-partial differential equation. Although successful in applications, a derivation from an underlying stochastic random walk has remained elusive. In this work we develop a framework by which non-local models can be derived from a space-jump process. We show how the notions of motility and a cell polarization vector can be naturally included. With this derivation we are able to include microscopic biological properties into the model. We show that particular choices yield the original Armstrong model, while others lead to more general models, including a doubly non-local adhesion model and non-local chemotaxis models. Finally, we use random walk simulations to confirm that the corresponding continuum model represents the mean field behaviour of the stochastic random walk.

MSC:

92C17 Cell movement (chemotaxis, etc.)
35Q92 PDEs in connection with biology, chemistry and other natural sciences
35R09 Integro-partial differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alberts B (2008) Molecular biology of the cell. Garland Science, New York
[2] Andasari V, Gerisch A, Lolas G, South AP, Chaplain MAJ (2011) Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation. J Math Biol 63(1):141-171 · Zbl 1230.92022 · doi:10.1007/s00285-010-0369-1
[3] Armstrong NJ, Painter KJ, Sherratt JA (2006) A continuum approach to modelling cell-cell adhesion. J Theor Biol 243(1):98-113 · Zbl 1447.92113 · doi:10.1016/j.jtbi.2006.05.030
[4] Armstrong NJ, Painter KJ, Sherratt JA (2009) Adding adhesion to a chemical signaling model for somite formation. Bull Math Biol 71(1):1-24 · Zbl 1169.92008 · doi:10.1007/s11538-008-9350-1
[5] Bell G (1978) Models for the specific adhesion of cells to cells. Science 200(4342):618-627 · doi:10.1126/science.347575
[6] Beysens DA, Forgacs G, Glazier JA (2000) Cell sorting is analogous to phase ordering in fluids. Proc Natl Acad Sci 97(17):9467-9471 · doi:10.1073/pnas.97.17.9467
[7] Brodland GW, Chen HH (2000) The mechanics of cell sorting and envelopment. J Biomech 33(7):845-851 · doi:10.1016/S0021-9290(00)00011-7
[8] Calvo J, Campos J, Caselles V, Sánchez O, Soler J (2015) Flux-saturated porous media equations and applications. EMS Surv Math Sci 2(1):131-218 · Zbl 1328.35089 · doi:10.4171/EMSS/11
[9] Chaplain MAJ, Lachowicz M, Szymanska Z, Wrzosek D (2011) Mathematical modelling of cancer invasion: the importance of cell-cell adhesion and cell-matrix adhesion. Math Model Methods Appl Sci 21(04):719-743 · Zbl 1221.35189 · doi:10.1142/S0218202511005192
[10] Charras G, Sahai E (2014) Physical influences of the extracellular environment on cell migration. Nat Rev Mol Cell Biol 15(12):813-824 · doi:10.1038/nrm3897
[11] Danuser G, Allard J, Mogilner A (2013) Mathematical modeling of eukaryotic cell migration: insights beyond experiments. Annu Rev Cell Dev Biol 29:501-528 · doi:10.1146/annurev-cellbio-101512-122308
[12] Davies JA (2013) Mechanisms of morphogenesis. Academic, Cambridge
[13] Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10(1):9-22 · doi:10.1038/nrc2748
[14] Dolak Y (2004) Advection dominated models for chemotaxis. PhD thesis, University of Vienna
[15] Domschke P, Trucu D, Gerisch A, Chaplain MAJ (2014) Mathematical modelling of cancer invasion: implications of cell adhesion variability for tumour infiltrative growth patterns. J Theor Biol 361:41-60 · Zbl 1303.92043 · doi:10.1016/j.jtbi.2014.07.010
[16] Dormann D, Weijer CJ (2001) Propagating chemoattractant waves coordinate periodic cell movement in dictyostelium slugs. Development 128(22):4535-4543
[17] Dyson J, Gourley SA, Villella-Bressan R, Webb GF (2010) Existence and asymptotic properties of solutions of a nonlocal evolution equation modeling cell-cell adhesion. SIAM J Math Anal 42(4):1784-1804 · Zbl 1222.35030 · doi:10.1137/090765663
[18] Erban R, Chapman JS, Maini PK (2007) A practical guide to stochastic simulations of reaction-diffusion processes. arXiv:0704.1908, pp 24-29
[19] Estrada R, Kanwal RP (1993) Asymptotic analysis: a distributional approach. Birkhäuser, Boston · Zbl 1331.46028
[20] Friedl P, Alexander S (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147(5):992-1009 · doi:10.1016/j.cell.2011.11.016
[21] Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10(1):21-33 · doi:10.1038/nrm2593
[22] Gerisch A (2010) On the approximation and efficient evaluation of integral terms in PDE models of cell adhesion. IMA J Numer Anal 30(1):173-194 · Zbl 1185.65166 · doi:10.1093/imanum/drp027
[23] Gerisch A, Chaplain MAJ (2008) Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. J Theor Biol 250(4):684-704 · Zbl 1397.92326 · doi:10.1016/j.jtbi.2007.10.026
[24] Gerisch, A.; Painter, KJ; Chauvière, A. (ed.); Preziosi, L. (ed.); Verdier, C. (ed.), Mathematical modeling of cell adhesion and its applications to developmental biology and cancer invasion, 319-350 (2010), Boca Raton · Zbl 1404.92077 · doi:10.1201/9781420094558-c12
[25] Gillespie DT (2007) Stochastic simulation of chemical kinetics. Annu Rev Phys Chem 58:35-55 · doi:10.1146/annurev.physchem.58.032806.104637
[26] Hillen T (2002) Hyperbolic models for chemosensitive movement. Math Model Methods Appl Sci 12(07):1007-1034 · Zbl 1163.35491 · doi:10.1142/S0218202502002008
[27] Hillen T (2005) On the \[L^2\] L2-moment closure of transport equations: the general case. Discret Contin Dyn Syst 5(2):299-318 · Zbl 1077.92004 · doi:10.3934/dcdsb.2005.5.299
[28] Hillen T, Painter KJ (2009) A user’s guide to PDE models for chemotaxis. J Math Biol 58(1-2):183-217 · Zbl 1161.92003 · doi:10.1007/s00285-008-0201-3
[29] Hillen, T.; Painter, KJ; Lewis, MA (ed.); P Maini, SP (ed.), Transport and anisotropic diffusion models for movement in oriented habitats, No. 2071, 177-222 (2013), Heidelberg · Zbl 1347.92065 · doi:10.1007/978-3-642-35497-7_7
[30] Hillen T, Painter KJ, Schmeiser C (2007) Global existence for chemotaxis with finite sampling radius. Discret Contin Dyn Syst Ser B 7(1):125-144 · Zbl 1116.92011 · doi:10.3934/dcdsb.2007.7.125
[31] Horstmann D (2003) From 1970 until present : the Keller-Segel model in chemotaxis and its consequences. Jahresber Dtsch Math Ver 105(3):103-165 · Zbl 1071.35001
[32] Hughes BD (1995) Random walks and random environments: random walks, 1st edn. Oxford Science Publications, Oxford · Zbl 0820.60053
[33] Jilkine A, Edelstein-Keshet L (2011) A comparison of mathematical models for polarization of single eukaryotic cells in response to guided cues. PLoS Comput Biol 7(4):e1001,121 · doi:10.1371/journal.pcbi.1001121
[34] Johnston ST, Simpson MJ, Baker RE (2012) Mean-field descriptions of collective migration with strong adhesion. Phys Rev E 85(5):051,922 · doi:10.1103/PhysRevE.85.051922
[35] Lauffenburger D (1989) A simple model for the effects of receptor-mediated cell-substratum adhesion on cell migration. Chem Eng Sci 44(9):1903-1914 · doi:10.1016/0009-2509(89)85131-0
[36] Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84(3):359-369 · doi:10.1016/S0092-8674(00)81280-5
[37] Leckband D (2010) Design rules for biomolecular adhesion: lessons from force measurements. Annu Rev Chem Biomol Eng 1:365-389 · doi:10.1146/annurev-chembioeng-073009-100931
[38] Li L, Nørrelkke SF, Cox EC (2008) Persistent cell motion in the absence of external signals: a search strategy for eukaryotic cells. PLoS One 3(5):e2093 · doi:10.1371/journal.pone.0002093
[39] Middleton AM, Fleck C, Grima R (2014) A continuum approximation to an off-lattice individual-cell based model of cell migration and adhesion. J Theor Biol 359:220-232 · Zbl 1412.92025 · doi:10.1016/j.jtbi.2014.06.011
[40] Mogilner A, Edelstein-Keshet L (1999) A non-local model for a swarm. J Math Biol 38(6):534-570 · Zbl 0940.92032 · doi:10.1007/s002850050158
[41] Mombach JC, Glazier JA, Raphael RC, Zajac M (1995) Quantitative comparison between differential adhesion models and cell sorting in the presence and absence of fluctuations. Phys Rev Lett 75(11):2244-2247 · doi:10.1103/PhysRevLett.75.2244
[42] Nishiya N, Kiosses WB, Han J, Ginsberg MH (2005) An alpha4 integrin-paxillin-arf-gap complex restricts rac activation to the leading edge of migrating cells. Nat Cell Biol 7(4):343-352 · doi:10.1038/ncb1234
[43] Othmer HG, Hillen T (2002) The diffusion limit of transport equations ii: chemotaxis equations. SIAM J Appl Math 62:1222-1250 · Zbl 1103.35098 · doi:10.1137/S0036139900382772
[44] Othmer HG, Dunbar S, Alt W (1988) Models of dispersal in biological systems. J Math Biol 26:263-298 · Zbl 0713.92018 · doi:10.1007/BF00277392
[45] Ou C, Zhang Y (2013) Traveling wavefronts of nonlocal reaction-diffusion models for adhesion in cell aggregation and cancer invasion. Can Appl Math Q 21(1):21-62 · Zbl 1336.35104
[46] Painter KJ (2009) Continuous models for cell migration in tissues and applications to cell sorting via differential chemotaxis. Bull Math Biol 71(5):1117-1147 · Zbl 1168.92010 · doi:10.1007/s11538-009-9396-8
[47] Painter KJ, Hillen T (2002) Volume-filling and quorum-sensing in models for chemosensitive movement. Can Appl Math Q 10(4):501-543 · Zbl 1057.92013
[48] Painter KJ, Armstrong NJ, Sherratt JA (2010) The impact of adhesion on cellular invasion processes in cancer and development. J Theor Biol 264(3):1057-1067 · Zbl 1406.92156 · doi:10.1016/j.jtbi.2010.03.033
[49] Painter KJ, Bloomfield JM, Sherratt JA, Gerisch A (2015) A nonlocal model for contact attraction and repulsion in heterogeneous cell populations. Bull Math Biol 77(6):1132-1165 · Zbl 1335.92026 · doi:10.1007/s11538-015-0080-x
[50] Ridley AJ (2011) Life at the leading edge. Cell 145(7):1012-22 · doi:10.1016/j.cell.2011.06.010
[51] Ridley AJ, Schwartz MA, Burridge K, Firtel Ra, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302(5651):1704-1709 · doi:10.1126/science.1092053
[52] Roussos ET, Condeelis JS, Patsialou A (2011) Chemotaxis in cancer. Nat Rev Cancer 11(8):573-587 · doi:10.1038/nrc3078
[53] Schienbein M, Franke K, Gruler H (1994) Random walk and directed movement: comparison between inert particles and self-organized molecular machines. Phys Rev E 49(6):5462-5471 · doi:10.1103/PhysRevE.49.5462
[54] Sherratt JA, Gourley SA, Armstrong NJ, Painter KJ (2008) Boundedness of solutions of a non-local reaction-diffusion model for adhesion in cell aggregation and cancer invasion. Eur J Appl Math 20(01):123 · Zbl 1194.35219 · doi:10.1017/S0956792508007742
[55] Shi L, Yu Z, Mao Z, Xiao A (2014) A directed continuous time random walk model with jump length depending on waiting time. Sci World J 2014:1-4
[56] Stevens A, Othmer HG (1997) Aggregation, blowup, and collapse: the ABC’s of taxis in reinforced random walks. SIAM J Appl Math 57(4):1044-1081 · Zbl 0990.35128 · doi:10.1137/S0036139995288976
[57] Théry M, Racine V, Piel M, Pépin A, Dimitrov A, Chen Y, Sibarita Jb, Bornens M (2006) Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc Natl Acad Sci USA 103(52):19,771-19,776 · doi:10.1073/pnas.0609267103
[58] Turner S, Sherratt JA, Painter KJ, Savill N (2004) From a discrete to a continuous model of biological cell movement. Phys Rev E 69(2):021,910 · doi:10.1103/PhysRevE.69.021910
[59] Van Kampen NG (2011) Stochastic processes in physics and chemistry. Elsevier Science, Amsterdam · Zbl 0511.60038
[60] Weiner OD (2002) Regulation of cell polarity during eukaryotic chemotaxis: the chemotactic compass. Curr Opin Cell Biol 14(2):196-202 · doi:10.1016/S0955-0674(02)00310-1
[61] Weiner, OD; Servant, G.; Parent, CA; Devreotes, PN; Bourne, HR; Drubin, DG (ed.), Cell polarity in response to chemoattractants, 201-239 (2000), Oxford
[62] White MD, Plachta N (2015) How adhesion forms the early mammalian embryo, 1st edn. Elsevier Inc, Amsterdam
[63] Winkler M, Hillen T, Painter KJ (2017) Global solvability and explicit bounds for a non-local adhesion model (submitted) · Zbl 1406.35430
[64] Zaburdaev VY (2006) Random walk model with waiting times depending on the preceding jump length. J Stat Phys 123(4):871-881 · Zbl 1101.82032 · doi:10.1007/s10955-006-9104-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.