×

Evaluating gambles using dynamics. (English) Zbl 1390.91133

Summary: Gambles are random variables that model possible changes in wealth. Classic decision theory transforms money into utility through a utility function and defines the value of a gamble as the expectation value of utility changes. Utility functions aim to capture individual psychological characteristics, but their generality limits predictive power. Expectation value maximizers are defined as rational in economics, but expectation values are only meaningful in the presence of ensembles or in systems with ergodic properties, whereas decision-makers have no access to ensembles, and the variables representing wealth in the usual growth models do not have the relevant ergodic properties. Simultaneously addressing the shortcomings of utility and those of expectations, we propose to evaluate gambles by averaging wealth growth over time. No utility function is needed, but a dynamic must be specified to compute time averages. Linear and logarithmic “utility functions” appear as transformations that generate ergodic observables for purely additive and purely multiplicative dynamics, respectively. We highlight inconsistencies throughout the development of decision theory, whose correction clarifies that our perspective is legitimate. These invalidate a commonly cited argument for bounded utility functions.{
©2016 American Institute of Physics}

MSC:

91B16 Utility theory
60G40 Stopping times; optimal stopping problems; gambling theory
37N40 Dynamical systems in optimization and economics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Cohen, E. G. D., Boltzmann and statistical mechanics, Boltzmann’s Legacy 150 Years After His Birth, Atti dei Convegni Lincei, 9-23 (1997) · Zbl 1034.82500
[2] Cochrane, J. H., Asset Pricing (2001)
[3] Huygens, C., De ratiociniis in ludo aleae (On reckoning at Games of Chance) (1657)
[4] Laplace, P. S., Théorie analytique des probabilités (1814)
[5] Bernoulli, D., Econometrica, 22, 23-36 (1738) · Zbl 0055.12004 · doi:10.2307/1909829
[6] Menger, K., Das Unsicherheitsmoment in der Wertlehre, J. Econ., 5, 459-485 (1934) · JFM 60.1156.02 · doi:10.1007/BF01311578
[7] Peters, O., Optimal leverage from non-ergodicity, Quant. Finance, 11, 1593-1602 (2011) · Zbl 1277.91160 · doi:10.1080/14697688.2010.513338
[8] Peters, O., The time resolution of the St Petersburg paradox, Philos. Trans. R. Soc. London, Ser. A, 369, 4913-4931 (2011) · Zbl 1239.91034 · doi:10.1098/rsta.2011.0065
[9] Peters, O.; Adamou, A., Stochastic market efficiency (2011)
[10] Gell-Mann, M.; Hartle, J. B., Decoherent histories quantum mechanics with one real fine-grained history, Phys. Rev. A, 85, 062120 (2012) · doi:10.1103/PhysRevA.85.062120
[11] Tao, T., Topics in Random Matrix Theory (2012) · Zbl 1256.15020
[12] Buchanan, M., Gamble with time, Nat. Phys., 9, 3 (2013) · doi:10.1038/nphys2520
[13] Yakovenko, V.; Rosser, J., Colloquium: Statistical mechanics of money, wealth, and income, Rev. Mod. Phys., 81, 1703-1725 (2009) · doi:10.1103/RevModPhys.81.1703
[14] Morowitz, H., Beginnings of Cellular Life (1992)
[15] Peters, O.; Adamou, A., The evolutionary advantage of cooperation (2015)
[16] Chernoff, H.; Moses, L. E., Elementary Decision Theory (1959) · Zbl 0089.14406
[17] Redner, S., Random multiplicative processes: An elementary tutorial, Am. J. Phys., 58, 267-273 (1990) · doi:10.1119/1.16497
[18] Peters, O. (2011)
[19] Fermat, P. and Pascal, B., private communication (1654).
[20] Montmort, P. R., Essay d’analyse sur les jeux de hazard (2006)
[21] Peters, O.; Klein, W., Ergodicity breaking in geometric Brownian motion, Phys. Rev. Lett., 110, 100603 (2013) · doi:10.1103/PhysRevLett.110.100603
[22] Barenblatt, G. I., Scaling (2003)
[23] Todhunter, I., A History of the Mathematical Theory of Probability (1865)
[24] von Neumann, J.; Morgenstern, O., Theory of Games and Economic Behavior (1944) · Zbl 0063.05930
[25] Samuelson, P. A., Foundations of Economic Analysis (1983)
[26] Coolidge, J. L., An Introduction to Mathematical Probability (1925) · JFM 51.0380.01
[27] Kelly, J. L. Jr., A new interpretation of information rate, Bell Syst. Tech. J., 35, 917-926 (1956) · doi:10.1002/j.1538-7305.1956.tb03809.x
[28] Cover, T. M.; Thomas, J. A., Elements of Information Theory (1991) · Zbl 0762.94001
[29] Arrow, K., The use of unbounded utility functions in expected-utility maximization: Response, Q. J. Econ., 88, 136-138 (1974) · doi:10.2307/1881800
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.