×

zbMATH — the first resource for mathematics

Antenna subtraction at NNLO with hadronic initial states: double real radiation for initial-initial configurations with two quark flavours. (English) Zbl 1294.81270
Summary: The antenna subtraction formalism allows to calculate QCD corrections to jet observables. Within this formalism, the subtraction terms are constructed using antenna functions describing all unresolved radiation between a pair of hard radiator partons. In this paper, we focus on the subtraction terms for double real radiation contributions to jet observables in hadron-hadron collisions evaluated at NNLO. An essential ingredient to these subtraction terms are the four-parton antenna functions with both radiators in the initial state. We outline the construction of the double real subtraction terms, classify all relevant antenna functions and describe their integration over the relevant antenna phase space. For the initial-initial antenna functions with two quark flavours, we derive the phase space master integrals and obtain the integrated antennae.
MSC:
81V05 Strong interaction, including quantum chromodynamics
81V35 Nuclear physics
81U05 \(2\)-body potential quantum scattering theory
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T18 Feynman diagrams
PDF BibTeX Cite
Full Text: DOI arXiv
References:
[1] Kinoshita, T., Mass singularities of Feynman amplitudes, J. Math. Phys., 3, 650, (1962)
[2] Lee, TD; Nauenberg, M., Degenerate systems and mass singularities, Phys. Rev., B 133, 1549, (1964)
[3] Catani, S.; Seymour, MH, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys., B 485, 291, (1997)
[4] Frixione, S.; Kunszt, Z.; Signer, A., Three jet cross-sections to next-to-leading order, Nucl. Phys., B 467, 399, (1996)
[5] Nagy, Z.; Trócsányi, Z., Calculation of QCD jet cross sections at next-to-leading order, Nucl. Phys., B 486, 189, (1997)
[6] Frixione, S., A general approach to jet cross-sections in QCD, Nucl. Phys., B 507, 295, (1997)
[7] G. Somogyi and Z. Trócsányi, A new subtraction scheme for computing QCD jet cross sections at next-to-leading order accuracy, hep-ph/0609041 [SPIRES].
[8] Frederix, R.; Frixione, S.; Maltoni, F.; Stelzer, T., Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP, 10, 003, (2009)
[9] Gleisberg, T.; Krauss, F., Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J., C 53, 501, (2008)
[10] M.H. Seymour and C. Tevlin, TeVJet: A general framework for the calculation of jet observables in NLO QCD, arXiv:0803.2231 [SPIRES].
[11] Hasegawa, K.; Moch, S.; Uwer, P., Automating dipole subtraction, Nucl. Phys. Proc. Suppl., 183, 268, (2008)
[12] Hasegawa, K.; Moch, S.; Uwer, P., Autodipole — automated generation of dipole subtraction terms -, Comput. Phys. Commun., 181, 1802, (2010)
[13] Frederix, R.; Gehrmann, T.; Greiner, N., Automation of the dipole subtraction method in madgraph/madevent, JHEP, 09, 122, (2008)
[14] Czakon, M.; Papadopoulos, CG; Worek, M., Polarizing the dipoles, JHEP, 08, 085, (2009)
[15] Berger, CF; etal., An automated implementation of on-shell methods for one-loop amplitudes, Phys. Rev., D 78, 036003, (2008)
[16] Giele, WT; Zanderighi, G., On the numerical evaluation of one-loop amplitudes: the gluonic case, JHEP, 06, 038, (2008)
[17] Ossola, G.; Papadopoulos, CG; Pittau, R., Cuttools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP, 03, 042, (2008)
[18] Binoth, T.; Guillet, JP; Heinrich, G.; Pilon, E.; Reiter, T., Golem95: a numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Commun., 180, 2317, (2009)
[19] Campbell, JM; Ellis, RK, An update on vector boson pair production at hadron colliders, Phys. Rev., D 60, 113006, (1999)
[20] Campbell, JM; Ellis, RK, Next-to-leading order corrections to W + 2 jet and Z + 2 jet production at hadron colliders, Phys. Rev., D 65, 113007, (2002)
[21] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EWN, Antenna subtraction at NNLO, JHEP, 09, 056, (2005)
[22] Weinzierl, S., Subtraction terms at NNLO, JHEP, 03, 062, (2003)
[23] Frixione, S.; Grazzini, M., Subtraction at NNLO, JHEP, 06, 010, (2005)
[24] Somogyi, G.; Trócsányi, Z.; Duca, V., Matching of singly- and doubly-unresolved limits of tree-level QCD squared matrix elements, JHEP, 06, 024, (2005)
[25] Somogyi, G.; Trócsányi, Z.; Duca, V., A subtraction scheme for computing QCD jet cross sections at NNLO: regularization of doubly-real emissions, JHEP, 01, 070, (2007)
[26] Somogyi, G.; Trócsányi, Z., A subtraction scheme for computing QCD jet cross sections at NNLO: regularization of real-virtual emission, JHEP, 01, 052, (2007)
[27] Somogyi, G.; Trócsányi, Z., A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the subtraction terms I, JHEP, 08, 042, (2008)
[28] Aglietti, U.; Duca, V.; Duhr, C.; Somogyi, G.; Trócsányi, Z., Analytic integration of real-virtual counterterms in NNLO jet cross sections I, JHEP, 09, 107, (2008)
[29] Somogyi, G., Subtraction with hadronic initial states: an NNLO- compatible scheme, JHEP, 05, 016, (2009)
[30] Bolzoni, P.; Moch, S-O; Somogyi, G.; Trócsányi, Z., Analytic integration of real-virtual counterterms in NNLO jet cross sections II, JHEP, 08, 079, (2009)
[31] Czakon, M., A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett., B 693, 259, (2010)
[32] Catani, S.; Grazzini, M., An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett., 98, 222002, (2007)
[33] Grazzini, M., NNLO predictions for the Higgs boson signal in the \(H\) → WWlνlν and \(H\) → ZZ → 4\(l\) decay channels, JHEP, 02, 043, (2008)
[34] Catani, S.; Cieri, L.; Ferrera, G.; Florian, D.; Grazzini, M., Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett., 103, 082001, (2009)
[35] Catani, S.; Ferrera, G.; Grazzini, M., W boson production at hadron colliders: the lepton charge asymmetry in NNLO QCD, JHEP, 05, 006, (2010)
[36] Binoth, T.; Heinrich, G., An automatized algorithm to compute infrared divergent multi-loop integrals, Nucl. Phys., B 585, 741, (2000)
[37] Binoth, T.; Heinrich, G., Numerical evaluation of multi-loop integrals by sector decomposition, Nucl. Phys., B 680, 375, (2004)
[38] Heinrich, G., Sector decomposition, Int. J. Mod. Phys., A 23, 1457, (2008)
[39] Heinrich, G., A numerical method for NNLO calculations, Nucl. Phys. Proc. Suppl., 116, 368, (2003)
[40] Anastasiou, C.; Melnikov, K.; Petriello, F., A new method for real radiation at NNLO, Phys. Rev., D 69, 076010, (2004)
[41] Binoth, T.; Heinrich, G., Numerical evaluation of phase space integrals by sector decomposition, Nucl. Phys., B 693, 134, (2004)
[42] Heinrich, G., The sector decomposition approach to real radiation at NNLO, Nucl. Phys. Proc. Suppl., 157, 43, (2006)
[43] Anastasiou, C.; Melnikov, K.; Petriello, F., Real radiation at NNLO: \(e\)\^{}{+}\(e\)\^{}{−} → 2 jets through \(O\)(\(α\)_{\(s\)}\^{}{2}), Phys. Rev. Lett., 93, 032002, (2004)
[44] Anastasiou, C.; Melnikov, K.; Petriello, F., Higgs boson production at hadron colliders: differential cross sections through next-to-next-to-leading order, Phys. Rev. Lett., 93, 262002, (2004)
[45] Anastasiou, C.; Melnikov, K.; Petriello, F., Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order, Nucl. Phys., B 724, 197, (2005)
[46] Melnikov, K.; Petriello, F., The W boson production cross section at the LHC through \(O\)(\(α\)_{\(s\)}\^{}{2}), Phys. Rev. Lett., 96, 231803, (2006)
[47] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EWN; Heinrich, G., Infrared structure of \(e\)\^{}{+}\(e\)\^{}{−} → 3 jets at NNLO, JHEP, 11, 058, (2007)
[48] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EWN; Heinrich, G., Jet rates in electron-positron annihilation at \(O\)(\(α\)_{\(s\)}\^{}{3}) in QCD, Phys. Rev. Lett., 100, 172001, (2008)
[49] Weinzierl, S., NNLO corrections to 3-jet observables in electron-positron annihilation, Phys. Rev. Lett., 101, 162001, (2008)
[50] Weinzierl, S., The infrared structure of \(e\)\^{}{+}\(e\)\^{}{−} → 3 jets at NNLO reloaded, JHEP, 07, 009, (2009)
[51] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EWN; Heinrich, G., Second-order QCD corrections to the thrust distribution, Phys. Rev. Lett., 99, 132002, (2007)
[52] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EWN; Heinrich, G., NNLO corrections to event shapes in \(e\)\^{}{+}\(e\)\^{}{−} annihilation, JHEP, 12, 094, (2007)
[53] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EWN; Heinrich, G., NNLO moments of event shapes in \(e\)\^{}{+}\(e\)\^{}{−} annihilation, JHEP, 05, 106, (2009)
[54] Weinzierl, S., Event shapes and jet rates in electron-positron annihilation at NNLO, JHEP, 06, 041, (2009)
[55] Weinzierl, S., Moments of event shapes in electron-positron annihilation at NNLO, Phys. Rev., D 80, 094018, (2009)
[56] Dissertori, G.; etal., First determination of the strong coupling constant using NNLO predictions for hadronic event shapes in \(e\)\^{}{+}\(e\)\^{}{−} annihilations, JHEP, 02, 040, (2008)
[57] Dissertori, G.; etal., Determination of the strong coupling constant using matched NNLO+NLLA predictions for hadronic event shapes in \(e\)\^{}{+}\(e\)\^{}{−} annihilations, JHEP, 08, 036, (2009)
[58] Dissertori, G.; etal., Precise determination of the strong coupling constant at NNLO in QCD from the three-jet rate in electron-positron annihilation at LEP, Phys. Rev. Lett., 104, 072002, (2010)
[59] JADE collaboration; Bethke, S.; Kluth, S.; Pahl, C.; Schieck, J., Determination of the strong coupling αs from hadronic event shapes with \(O\)(alpha_{\(s\)}\^{}{3}) and resummed QCD predictions using JADE data, Eur. Phys. J., C 64, 351, (2009)
[60] Gehrmann, T.; Jaquier, M.; Luisoni, G., Hadronization effects in event shape moments, Eur. Phys. J., C 67, 57, (2010)
[61] Daleo, A.; Gehrmann, T.; Maître, D., Antenna subtraction with hadronic initial states, JHEP, 04, 016, (2007)
[62] Daleo, A.; Gehrmann-De Ridder, A.; Gehrmann, T.; Luisoni, G., Antenna subtraction at NNLO with hadronic initial states: initial-final configurations, JHEP, 01, 118, (2010)
[63] R. Boughezal, A. G.-D. Ridder and M. Ritzmann, NNLO antenna subtraction with two hadronic initial states, PoS(RADCOR2009)052 [arXiv:1001.2396] [SPIRES].
[64] Nigel Glover, EW; Pires, J., Antenna subtraction for gluon scattering at NNLO, JHEP, 06, 096, (2010)
[65] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EWN, Infrared structure of \(e\)\^{}{+}\(e\)\^{}{−} → 2 jets at NNLO, Nucl. Phys., B 691, 195, (2004)
[66] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EWN, Quark-gluon antenna functions from neutralino decay, Phys. Lett., B 612, 36, (2005)
[67] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EWN, Gluon-gluon antenna functions from Higgs boson decay, Phys. Lett., B 612, 49, (2005)
[68] Florian, D.; Grazzini, M., The structure of large logarithmic corrections at small transverse momentum in hadronic collisions, Nucl. Phys., B 616, 247, (2001)
[69] Anastasiou, C.; Melnikov, K., Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys., B 646, 220, (2002)
[70] Anastasiou, C.; Dixon, LJ; Melnikov, K.; Petriello, F., High precision QCD at hadron colliders: electroweak gauge boson rapidity distributions at NNLO, Phys. Rev., D 69, 094008, (2004)
[71] Anastasiou, C.; Dixon, LJ; Melnikov, K.; Petriello, F., Dilepton rapidity distribution in the Drell-Yan process at NNLO in QCD, Phys. Rev. Lett., 91, 182002, (2003)
[72] Tkachov, FV, A theorem on analytical calculability of four loop renormalization group functions, Phys. Lett., B 100, 65, (1981)
[73] Chetyrkin, KG; Tkachov, FV, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys., B 192, 159, (1981)
[74] Gehrmann, T.; Remiddi, E., Differential equations for two-loop four-point functions, Nucl. Phys., B 580, 485, (2000)
[75] Laporta, S., High-precision calculation of multi-loop Feynman integrals by difference equations, Int. J. Mod. Phys., A 15, 5087, (2000)
[76] Smirnov, AV, Algorithm FIRE — Feynman integral reduction, JHEP, 10, 107, (2008)
[77] Kotikov, AV, Differential equations method: new technique for massive Feynman diagrams calculation, Phys. Lett., B 254, 158, (1991)
[78] Kotikov, AV, Differential equations method: the calculation of vertex type Feynman diagrams, Phys. Lett., B 259, 314, (1991)
[79] Kotikov, AV, Differential equation method: the calculation of N point Feynman diagrams, Phys. Lett., B 267, 123, (1991)
[80] Remiddi, E., Differential equations for Feynman graph amplitudes, Nuovo Cim., A 110, 1435, (1997)
[81] Caffo, M.; Czyz, H.; Laporta, S.; Remiddi, E., Master equations for master amplitudes, Acta Phys. Polon., B 29, 2627, (1998)
[82] Caffo, M.; Czyz, H.; Laporta, S.; Remiddi, E., The master differential equations for the 2-loop sunrise selfmass amplitudes, Nuovo Cim., A 111, 365, (1998)
[83] Gehrmann, T.; Remiddi, E., Two-loop master integrals for \(γ\)* → 3 jets: the planar topologies, Nucl. Phys., B 601, 248, (2001)
[84] Gehrmann, T.; Remiddi, E., Numerical evaluation of two-dimensional harmonic polylogarithms, Comput. Phys. Commun., 144, 200, (2002)
[85] Remiddi, E.; Vermaseren, JAM, Harmonic polylogarithms, Int. J. Mod. Phys., A 15, 725, (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.