×

zbMATH — the first resource for mathematics

Antenna subtraction at NNLO with hadronic initial states: Initial-final configurations. (English) Zbl 1269.81194
Summary: We extend the antenna subtraction method to include initial states containing one hadron at NNLO. We present results for all the necessary subtraction terms, antenna functions, for the master integrals required to integrate them over the relevant phase space and finally for the integrated antennae themselves. Where applicable, our results are cross-checked against the known NNLO coefficient functions for deep inelastic scattering processes.

MSC:
81V05 Strong interaction, including quantum chromodynamics
81V35 Nuclear physics
81U35 Inelastic and multichannel quantum scattering
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
Software:
HPL
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and collider physics, Cambridge University Press, Cambridge U.K. (1996).
[2] G. Dissertori, I.G. Knowles and M. Schmelling, Quantum chromodynamics: high energy experiments and theory, Oxford University Press, Oxford U.K. (2003).
[3] Bern, Z.; Dixon, LJ; Ghinculov, A., Two-loop correction to Bhabha scattering, Phys. Rev., D 63, 053007, (2001)
[4] Anastasiou, C.; Glover, EWN; Oleari, C.; Tejeda-Yeomans, ME, Two-loop QCD corrections to the scattering of massless distinct quarks, Nucl. Phys., B 601, 318, (2001)
[5] Anastasiou, C.; Glover, EWN; Oleari, C.; Tejeda-Yeomans, ME, Two-loop QCD corrections to massless identical quark scattering, Nucl. Phys., B 601, 341, (2001)
[6] Anastasiou, C.; Glover, EWN; Oleari, C.; Tejeda-Yeomans, ME, Two-loop QCD corrections to massless quark-gluon scattering, Nucl. Phys., B 605, 486, (2001)
[7] Glover, EWN; Oleari, C.; Tejeda-Yeomans, ME, Two-loop QCD corrections to gluon-gluon scattering, Nucl. Phys., B 605, 467, (2001)
[8] Anastasiou, C.; Glover, EWN; Tejeda-Yeomans, ME, Two-loop QED and QCD corrections to massless fermion-boson scattering, Nucl. Phys., B 629, 255, (2002)
[9] Glover, EWN; Tejeda-Yeomans, ME, Two-loop QCD helicity amplitudes for massless quark-massless gauge boson scattering, JHEP, 06, 033, (2003)
[10] Glover, EWN, Two-loop QCD helicity amplitudes for massless quark-quark scattering, JHEP, 04, 021, (2004)
[11] Bern, Z.; Freitas, A.; Dixon, LJ, Two-loop amplitudes for gluon fusion into two photons, JHEP, 09, 037, (2001)
[12] Bern, Z.; Freitas, A.; Dixon, LJ, Two-loop helicity amplitudes for gluon gluon scattering in QCD and supersymmetric Yang-Mills theory, JHEP, 03, 018, (2002)
[13] Bern, Z.; Freitas, A.; Dixon, LJ, Two-loop helicity amplitudes for quark gluon scattering in QCD and gluino gluon scattering in supersymmetric Yang-Mills theory, JHEP, 06, 028, (2003)
[14] Freitas, A.; Bern, Z., Two-loop helicity amplitudes for quark-quark scattering in QCD and gluino gluino scattering in supersymmetric Yang-Mills theory, JHEP, 09, 039, (2004)
[15] Bern, Z.; Freitas, A.; Dixon, LJ; Ghinculov, A.; Wong, HL, QCD and QED corrections to light-by-light scattering, JHEP, 11, 031, (2001)
[16] Binoth, T.; Glover, EWN; Marquard, P.; Bij, JJ, Two-loop corrections to light-by-light scattering in supersymmetric QED, JHEP, 05, 060, (2002)
[17] Garland, LW; Gehrmann, T.; Glover, EWN; Koukoutsakis, A.; Remiddi, E., The two-loop QCD matrix element for \(e\)\^{}{+}\(e\)\^{}{−} → 3 jets, Nucl. Phys., B 627, 107, (2002)
[18] Garland, LW; Gehrmann, T.; Glover, EWN; Koukoutsakis, A.; Remiddi, E., Two-loop QCD helicity amplitudes for \(e\)\^{}{+}\(e\)\^{}{−} → 3 jets, Nucl. Phys., B 642, 227, (2002)
[19] Campbell, JM; Ellis, RK, Next-to-leading order corrections to \(W\) + 2 jet and \(Z\) + 2 jet production at hadron colliders, Phys. Rev., D 65, 113007, (2002)
[20] Signer, A.; Dixon, LJ, Electron positron annihilation into four jets at next-to-leading order in αs, Phys. Rev. Lett., 78, 811, (1997)
[21] Dixon, LJ; Signer, A., Complete \(O\)(\(α\)_{s}\^{}{3}) results for \(e\)\^{}{+}\(e\)\^{}{−} → (γ, \(Z\)) → four jets, Phys. Rev., D 56, 4031, (1997)
[22] Nagy, Z.; Trócsányi, Z., Next-to-leading order calculation of four-jet shape variables, Phys. Rev. Lett., 79, 3604, (1997)
[23] Campbell, JM; Cullen, MA; Glover, EWN, Four jet event shapes in electron positron annihilation, Eur. Phys. J., C 9, 245, (1999)
[24] Weinzierl, S.; Kosower, DA, QCD corrections to four-jet production and three-jet structure in \(e\)\^{}{+}\(e\)\^{}{−} annihilation, Phys. Rev., D 60, 054028, (1999)
[25] Kilgore, WB; Giele, WT, Next-to-leading order gluonic three jet production at hadron colliders, Phys. Rev., D 55, 7183, (1997)
[26] Nagy, Z.; Trócsányi, Z., Multi-jet cross sections in deep inelastic scattering at next-to-leading order, Phys. Rev. Lett., 87, 082001, (2001)
[27] Nagy, Z., Three-jet cross sections in hadron hadron collisions at next-to-leading order, Phys. Rev. Lett., 88, 122003, (2002)
[28] Nagy, Z., Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev., D 68, 094002, (2003)
[29] Bern, Z.; Dixon, LJ; Dunbar, DC; Kosower, DA, One-loop n-point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys., B 425, 217, (1994)
[30] Kosower, DA, All-order collinear behavior in gauge theories, Nucl. Phys., B 552, 319, (1999)
[31] Kosower, DA; Uwer, P., One-loop splitting amplitudes in gauge theory, Nucl. Phys., B 563, 477, (1999)
[32] Bern, Z.; Duca, V.; Schmidt, CR, The infrared behavior of one-loop gluon amplitudes at next-to-next-to-leading order, Phys. Lett., B 445, 168, (1998)
[33] Bern, Z.; Duca, V.; Kilgore, WB; Schmidt, CR, The infrared behavior of one-loop QCD amplitudes at next-to-next-to-leading order, Phys. Rev., D 60, 116001, (1999)
[34] Catani, S.; Grazzini, M., The soft-gluon current at one-loop order, Nucl. Phys., B 591, 435, (2000)
[35] Kosower, DA, All-orders singular emission in gauge theories, Phys. Rev. Lett., 91, 061602, (2003)
[36] Weinzierl, S., Subtraction terms for one-loop amplitudes with one unresolved parton, JHEP, 07, 052, (2003)
[37] Anastasiou, C.; Bern, Z.; Dixon, LJ; Kosower, DA, Planar amplitudes in maximally supersymmetric Yang-Mills theory, Phys. Rev. Lett., 91, 251602, (2003)
[38] Bern, Z.; Dixon, LJ; Kosower, DA, Two-loop \(g\) → gg splitting amplitudes in QCD, JHEP, 08, 012, (2004)
[39] Badger, SD; Glover, EWN, Two-loop splitting functions in QCD, JHEP, 07, 040, (2004)
[40] Gehrmann-De Ridder, A.; Glover, EWN, A complete \( \mathcal{O}\left( {α {α_s}} \right) \) calculation of the photon + 1 jet rate in \(e\)\^{}{+}\(e\)\^{}{−} annihilation, Nucl. Phys., B 517, 269, (1998)
[41] Campbell, JM; Glover, EWN, Double unresolved approximations to multiparton scattering amplitudes, Nucl. Phys., B 527, 264, (1998)
[42] Catani, S.; Grazzini, M., Collinear factorization and splitting functions for next-to-next-to-leading order QCD calculations, Phys. Lett., B 446, 143, (1999)
[43] Catani, S.; Grazzini, M., Infrared factorization of tree level QCD amplitudes at the next-to-next-to-leading order and beyond, Nucl. Phys., B 570, 287, (2000)
[44] Berends, FA; Giele, WT, Multiple soft gluon radiation in parton processes, Nucl. Phys., B 313, 595, (1989)
[45] Duca, V.; Frizzo, A.; Maltoni, F., Factorization of tree QCD amplitudes in the high-energy limit and in the collinear limit, Nucl. Phys., B 568, 211, (2000)
[46] Birthwright, TG; Glover, EWN; Khoze, VV; Marquard, P., Multi-gluon collinear limits from MHV diagrams, JHEP, 05, 013, (2005)
[47] Kunszt, Z.; Soper, DE, Calculation of jet cross-sections in hadron collisions at order \(α\)_{\(s\)}\^{}{3}, Phys. Rev., D 46, 192, (1992)
[48] Frixione, S.; Kunszt, Z.; Signer, A., Three jet cross-sections to next-to-leading order, Nucl. Phys., B 467, 399, (1996)
[49] Catani, S.; Seymour, MH, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys., B 485, 291, (1997)
[50] Kosower, DA, Antenna factorization of gauge-theory amplitudes, Phys. Rev., D 57, 5410, (1998)
[51] Kosower, DA, Antenna factorization in strongly-ordered limits, Phys. Rev., D 71, 045016, (2005)
[52] Z. Nagy, G. Somogyi and Z. Trócsányi, Separation of soft and collinear infrared limits of QCD squared matrix elements, hep-ph/0702273 [SPIRES].
[53] Somogyi, G., Subtraction with hadronic initial states: an NNLO-compatible scheme, JHEP, 05, 016, (2009)
[54] Kosower, DA, Multiple singular emission in gauge theories, Phys. Rev., D 67, 116003, (2003)
[55] Weinzierl, S., Subtraction terms at NNLO, JHEP, 03, 062, (2003)
[56] Kilgore, WB, Subtraction terms for hadronic production processes at next-to-next-to-leading order, Phys. Rev., D 70, 031501, (2004)
[57] Frixione, S.; Grazzini, M., Subtraction at NNLO, JHEP, 06, 010, (2005)
[58] Somogyi, G.; Trócsányi, Z.; Duca, V., Matching of singly- and doubly-unresolved limits of tree-level QCD squared matrix elements, JHEP, 06, 024, (2005)
[59] Somogyi, G.; Trócsányi, Z.; Duca, V., A subtraction scheme for computing QCD jet cross sections at NNLO: regularization of doubly-real emissions, JHEP, 01, 070, (2007)
[60] Somogyi, G.; Trócsányi, Z., A subtraction scheme for computing QCD jet cross sections at NNLO: regularization of real-virtual emission, JHEP, 01, 052, (2007)
[61] Somogyi, G.; Trócsányi, Z., A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the subtraction terms I, JHEP, 08, 042, (2008)
[62] Aglietti, U.; Duca, V.; Duhr, C.; Somogyi, G.; Trócsányi, Z., Analytic integration of real-virtual counterterms in NNLO jet cross sections I, JHEP, 09, 107, (2008)
[63] Bolzoni, P.; Moch, S-O; Somogyi, G.; Trócsányi, Z., Analytic integration of real-virtual counterterms in NNLO jet cross sections II, JHEP, 08, 079, (2009)
[64] Catani, S.; Grazzini, M., An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett., 98, 222002, (2007)
[65] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EWN, Antenna subtraction at NNLO, JHEP, 09, 056, (2005)
[66] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EWN, Infrared structure of \(e\)\^{}{+}\(e\)\^{}{−} → 2 jets at NNLO, Nucl. Phys., B 691, 195, (2004)
[67] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EWN, Quark-gluon antenna functions from neutralino decay, Phys. Lett., B 612, 36, (2005)
[68] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EWN, Gluon-gluon antenna functions from Higgs boson decay, Phys. Lett., B 612, 49, (2005)
[69] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EWN; Heinrich, G., Infrared structure of \(e\)\^{}{+}\(e\)\^{}{−} → 3 jets at NNLO, JHEP, 11, 058, (2007)
[70] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EWN; Heinrich, G., Jet rates in electron-positron annihilation at \(O\)(\(α\)_{\(s\)}\^{}{3}) in QCD, Phys. Rev. Lett., 100, 172001, (2008)
[71] Weinzierl, S., NNLO corrections to 3-jet observables in electron-positron annihilation, Phys. Rev. Lett., 101, 162001, (2008)
[72] Weinzierl, S., The infrared structure of \(e\)\^{}{+}\(e\)\^{}{−} → 3 jets at NNLO reloaded, JHEP, 07, 009, (2009)
[73] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EWN; Heinrich, G., Second-order QCD corrections to the thrust distribution, Phys. Rev. Lett., 99, 132002, (2007)
[74] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EWN; Heinrich, G., NNLO corrections to event shapes in \(e\)\^{}{+}\(e\)\^{}{−} annihilation, JHEP, 12, 094, (2007)
[75] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EWN; Heinrich, G., NNLO moments of event shapes in \(e\)\^{}{+}\(e\)\^{}{−} annihilation, JHEP, 05, 106, (2009)
[76] Weinzierl, S., Event shapes and jet rates in electron-positron annihilation at NNLO, JHEP, 06, 041, (2009)
[77] Weinzierl, S., Moments of event shapes in electron-positron annihilation at NNLO, Phys. Rev., D 80, 094018, (2009)
[78] Dissertori, G.; etal., First determination of the strong coupling constant using NNLO predictions for hadronic event shapes in \(e\)\^{}{+}\(e\)\^{}{−} annihilations, JHEP, 02, 040, (2008)
[79] Dissertori, G.; etal., Determination of the strong coupling constant using matched NNLO+NLLA predictions for hadronic event shapes in \(e\)\^{}{+}\(e\)\^{}{−} annihilations, JHEP, 08, 036, (2009)
[80] G. Dissertori et al., Precise determination of the strong coupling constant at NNLO in QCD from the three-jet rate in electron-positron annihilation at LEP, arXiv:0910.4283 [SPIRES].
[81] Becher, T.; Schwartz, MD, A precise determination of \(α\)_{\(s\)} from LEP thrust data using effective field theory, JHEP, 07, 034, (2008)
[82] Davison, RA; Webber, BR, Non-perturbative contribution to the thrust distribution in \(e\)\^{}{+}\(e\)\^{}{−} annihilation, Eur. Phys. J., C 59, 13, (2009)
[83] JADE collaboration; Bethke, S.; Kluth, S.; Pahl, C.; Schieck, J., Determination of the strong coupling \(α\)_{\(S\)} from hadronic event shapes and NNLO QCD predictions using JADE data, Eur. Phys. J., C 64, 351, (2009)
[84] T. Gehrmann, M. Jaquier and G. Luisoni, Hadronization effects in event shape moments, arXiv:0911.2422 [SPIRES].
[85] Giele, WT; Kosower, DA; Skands, PZ, A simple shower and matching algorithm, Phys. Rev., D 78, 014026, (2008)
[86] Catani, S.; Trentadue, L.; Turnock, G.; Webber, BR, Resummation of large logarithms in \(e\)\^{}{+}\(e\)\^{}{−} event shape distributions, Nucl. Phys., B 407, 3, (1993)
[87] Gehrmann, T.; Luisoni, G.; Stenzel, H., Matching NLLA+NNLO for event shape distributions, Phys. Lett., B 664, 265, (2008)
[88] Gehrmann-De Ridder, A.; Ritzmann, M., NLO antenna subtraction with massive fermions, JHEP, 07, 041, (2009)
[89] Daleo, A.; Gehrmann, T.; Maître, D., Antenna subtraction with hadronic initial states, JHEP, 04, 016, (2007)
[90] Binoth, T.; Heinrich, G., An automatized algorithm to compute infrared divergent multi-loop integrals, Nucl. Phys., B 585, 741, (2000)
[91] Heinrich, G., A numerical method for NNLO calculations, Nucl. Phys. (Proc. Suppl.), 116, 368, (2003)
[92] Anastasiou, C.; Melnikov, K.; Petriello, F., A new method for real radiation at NNLO, Phys. Rev., D 69, 076010, (2004)
[93] Binoth, T.; Heinrich, G., Numerical evaluation of phase space integrals by sector decomposition, Nucl. Phys., B 693, 134, (2004)
[94] Anastasiou, C.; Melnikov, K.; Petriello, F., Higgs boson production at hadron colliders: differential cross sections through next-to-next-to-leading order, Phys. Rev. Lett., 93, 262002, (2004)
[95] Anastasiou, C.; Melnikov, K.; Petriello, F., Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order, Nucl. Phys., B 724, 197, (2005)
[96] Anastasiou, C.; Dissertori, G.; Stockli, F., NNLO QCD predictions for the \(H\) → WWℓℓνν signal at the LHC, JHEP, 09, 018, (2007)
[97] Melnikov, K.; Petriello, F., The W boson production cross section at the LHC through \(O\)(\(α\)_{\(s\)}\^{}{2}), Phys. Rev. Lett., 96, 231803, (2006)
[98] Grazzini, M., NNLO predictions for the Higgs boson signal in the \(H\) → WWℓνℓν and \(H\) → ZZ → 4\(ℓ\) decay channels, JHEP, 02, 043, (2008)
[99] Catani, S.; Cieri, L.; Ferrera, G.; Florian, D.; Grazzini, M., Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett., 103, 082001, (2009)
[100] Anastasiou, C.; Melnikov, K., Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys., B 646, 220, (2002)
[101] Tkachov, FV, A theorem on analytical calculability of four loop renormalization group functions, Phys. Lett., B 100, 65, (1981)
[102] Chetyrkin, KG; Tkachov, FV, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys., B 192, 159, (1981)
[103] Gehrmann, T.; Remiddi, E., Differential equations for two-loop four-point functions, Nucl. Phys., B 580, 485, (2000)
[104] Laporta, S., High-precision calculation of multi-loop Feynman integrals by difference equations, Int. J. Mod. Phys., A 15, 5087, (2000)
[105] Kotikov, AV, Differential equations method: new technique for massive Feynman diagrams calculation, Phys. Lett., B 254, 158, (1991)
[106] Kotikov, AV, Differential equations method: the calculation of vertex type Feynman diagrams, Phys. Lett., B 259, 314, (1991)
[107] Kotikov, AV, Differential equation method: the calculation of N point Feynman diagrams, Phys. Lett., B 267, 123, (1991)
[108] Remiddi, E., Differential equations for Feynman graph amplitudes, Nuovo Cim., A 110, 1435, (1997)
[109] Caffo, M.; Czyz, H.; Laporta, S.; Remiddi, E., Master equations for master amplitudes, Acta Phys. Polon., B 29, 2627, (1998)
[110] Caffo, M.; Czyz, H.; Laporta, S.; Remiddi, E., Master equations for master amplitudes, Acta Phys. Polon., B 29, 2627, (1998)
[111] Caffo, M.; Czyz, H.; Laporta, S.; Remiddi, E., The master differential equations for the 2-loop sunrise selfmass amplitudes, Nuovo Cim., A 111, 365, (1998)
[112] Gehrmann-De Ridder, A.; Gehrmann, T.; Heinrich, G., Four-particle phase space integrals in massless QCD, Nucl. Phys., B 682, 265, (2004)
[113] Zijlstra, EB; Neerven, WL, Order \(α\)_{\(s\)}\^{}{2} QCD corrections to the deep inelastic proton structure functions \(F\)_{2} and \(F\)_{\(L\)}, Nucl. Phys., B 383, 525, (1992)
[114] Zijlstra, EB; Neerven, WL, Order \(α\)_{\(s\)}\^{}{2} correction to the structure function \(F\)_{3}(\(x\), \(Q\)\^{}{2}) in deep inelastic neutrino-hadron scattering, Phys. Lett., B 297, 377, (1992)
[115] Remiddi, E.; Vermaseren, JAM, Harmonic polylogarithms, Int. J. Mod. Phys., A 15, 725, (2000)
[116] Gehrmann, T.; Remiddi, E., Numerical evaluation of harmonic polylogarithms, Comput. Phys. Commun., 141, 296, (2001)
[117] Maître, D., HPL, a Mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun., 174, 222, (2006)
[118] D. Maître, Extension of HPL to complex arguments, hep-ph/0703052 [SPIRES].
[119] Graudenz, D., Three jet production in deep inelastic electron-proton scattering to order \(α\)_{\(s\)}\^{}{2}, Phys. Lett., B 256, 518, (1991)
[120] Graudenz, D., Next-to-leading order QCD corrections to jet cross-sections and jet rates in deeply inelastic electron proton scattering, Phys. Rev., D 49, 3291, (1994)
[121] D. Graudenz, DISASTER++ version 1.0, hep-ph/9710244 [SPIRES].
[122] Mirkes, E.; Zeppenfeld, D., Dijet production at HERA in next-to-leading order, Phys. Lett., B 380, 205, (1996)
[123] Catani, S.; Seymour, MH, The dipole formalism for the calculation of QCD jet cross sections at next-to-leading order, Phys. Lett., B 378, 287, (1996)
[124] Pötter, B., Jetvip 1.1: calculating one jet and two jet cross-sections with virtual photons in NLO QCD, Comput. Phys. Commun., 119, 45, (1999)
[125] Gehrmann, T.; Remiddi, E., Analytic continuation of massless two-loop four-point functions, Nucl. Phys., B 640, 379, (2002)
[126] Gehrmann, T.; Glover, EWN, Two-loop QCD helicity amplitudes for (2 + 1)-jet production in deep inelastic scattering, Phys. Lett., B 676, 146, (2009)
[127] Moch, S.; Vermaseren, JAM, Deep inelastic structure functions at two loops, Nucl. Phys., B 573, 853, (2000)
[128] G. Soar, A. Vogt, S. Moch and J. Vermaseren, On Higgs-exchange DIS, physical evolution kernels and fourth-order splitting functions at large x, arXiv:0912.0369 [SPIRES].
[129] Gehrmann, T.; Huber, T.; Maître, D., Two-loop quark and gluon form factors in dimensional regularisation, Phys. Lett., B 622, 295, (2005)
[130] H1 collaboration; Aktas, A.; etal., Measurement of inclusive jet production in deep-inelastic scattering at high \(Q\)\^{}{2} and determination of the strong coupling, Phys. Lett., B 653, 134, (2007)
[131] H1 collaboration; Adloff, C.; etal., Measurement of inclusive jet cross-sections in deep-inelastic e p scattering at HERA, Phys. Lett., B 542, 193, (2002)
[132] H1 collaboration; Adloff, C.; etal., Dijet production in charged and neutral current \(e\)\^{}{+}\(p\) interactions at high \(Q\)\^{}{2}, Eur. Phys. J., C 19, 429, (2001)
[133] ZEUS collaboration; Chekanov, S.; etal., Inclusive-jet and dijet cross sections in deep inelastic scattering at HERA, Nucl. Phys., B 765, 1, (2007)
[134] ZEUS collaboration; Chekanov, S.; etal., Jet-radius dependence of inclusive-jet cross sections in deep inelastic scattering at HERA, Phys. Lett., B 649, 12, (2007)
[135] ZEUS collaboration; Chekanov, S.; etal., Dijet production in neutral current deep inelastic scattering at HERA, Eur. Phys. J., C 23, 13, (2002)
[136] H1 collaboration, M. Gouzevitch, Jet cross sections and α_{\(S\)}in DIS, in Proceedings of the 16\^{}{th}International Workshop on “Deep Inelastic Scattering and QCD (DIS 08)”, London U.K. 2008, R. Devenish, M. Wing and R. Thorne eds., pg. 171 [SPIRES].
[137] H1 and ZEUS collaborations, T. Kluge, Combined H1-ZEUS α_{\(S\)}fit to jets in DIS, in Proceedings of the 16\^{}{th}International Workshop on “Deep Inelastic Scattering and QCD (DIS 08)”, London U.K. 2008, R. Devenish, M. Wing and R. Thorne eds., pg. 172 [SPIRES].
[138] Martin, AD; Stirling, WJ; Thorne, RS; Watt, G., Update of parton distributions at NNLO, Phys. Lett., B 652, 292, (2007)
[139] Alekhin, S.; Melnikov, K.; Petriello, F., Fixed target Drell-Yan data and NNLO QCD fits of parton distribution functions, Phys. Rev., D 74, 054033, (2006)
[140] Jimenez-Delgado, P.; Reya, E., Dynamical NNLO parton distributions, Phys. Rev., D 79, 074023, (2009)
[141] Martin, AD; Stirling, WJ; Thorne, RS; Watt, G., Parton distributions for the LHC, Eur. Phys. J., C 63, 189, (2009)
[142] Moch, S.; Vermaseren, JAM; Vogt, A., The three-loop splitting functions in QCD: the non-singlet case, Nucl. Phys., B 688, 101, (2004)
[143] Vogt, A.; Moch, S.; Vermaseren, JAM, The three-loop splitting functions in QCD: the singlet case, Nucl. Phys., B 691, 129, (2004)
[144] Hamberg, R.; Neerven, WL; Matsuura, T., A complete calculation of the order αs2 correction to the Drell-Yan K factor, Nucl. Phys., B 359, 343, (1991)
[145] Anastasiou, C.; Dixon, LJ; Melnikov, K.; Petriello, F., High precision QCD at hadron colliders: electroweak gauge boson rapidity distributions at NNLO, Phys. Rev., D 69, 094008, (2004)
[146] Melnikov, K.; Petriello, F., Electroweak gauge boson production at hadron colliders through O(α_{\(s\)}\^{}{2}\()\), Phys. Rev., D 74, 114017, (2006)
[147] Alekhin, S.; Moch, S., Higher order QCD corrections to charged-lepton deep-inelastic scattering and global fits of parton distributions, Phys. Lett., B 672, 166, (2009)
[148] Hagiwara, K.; Zeppenfeld, D., Amplitudes for multiparton processes involving a current at \(e\)\^{}{+}\(e\)\^{}{−}, \(e\)\^{}{±}\(p\) and hadron colliders, Nucl. Phys., B 313, 560, (1989)
[149] Berends, FA; Giele, WT; Kuijf, H., Exact expressions for processes involving a vector boson and up to five partons, Nucl. Phys., B 321, 39, (1989)
[150] Falck, NK; Graudenz, D.; Kramer, G., Cross-section for five jet production in \(e\)\^{}{+}\(e\)\^{}{−} annihilation, Nucl. Phys., B 328, 317, (1989)
[151] Bern, Z.; Dixon, LJ; Kosower, DA; Weinzierl, S., One-loop amplitudes for \( {e^{+} }{e^{-} } → \bar qq\bar QQ \), Nucl. Phys., B 489, 3, (1997)
[152] Bern, Z.; Dixon, LJ; Kosower, DA, One-loop amplitudes for \(e\)\^{}{+}\(e\)\^{}{−} to four partons, Nucl. Phys., B 513, 3, (1998)
[153] Glover, EWN; Miller, DJ, The one-loop QCD corrections for \( γ ^{*} → Q\bar Qq\bar q \), Phys. Lett., B 396, 257, (1997)
[154] Campbell, JM; Glover, EWN; Miller, DJ, The one-loop QCD corrections for \( γ ^{*} → q\bar qgg \), Phys. Lett., B 409, 503, (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.