Garbaczewski, Piotr Parametric dynamics of level spacings in quantum chaos. (English) Zbl 0983.81023 Phys. Lett., A 293, No. 1-2, 23-28 (2002). Summary: We identify parametric (radial) Bessel-Ornstein-Uhlenbeck stochastic processes as primitive dynamical models of energy level repulsion in irregular quantum systems. Familiar GOE, GUE, GSE and non-Hermitian Ginibre-type (Wigner surmise) level spacing distributions arise as special cases in that formalism, as densities of asymptotic invariant (equilibrium) probability measures. Cited in 1 Document MSC: 81Q50 Quantum chaos 60K40 Other physical applications of random processes Keywords:Bessel-Ornstein-Uhlenbeck stochastic processes; energy level repulsion; asymptotic invariant equilibrium probability measures PDF BibTeX XML Cite \textit{P. Garbaczewski}, Phys. Lett., A 293, No. 1--2, 23--28 (2002; Zbl 0983.81023) Full Text: DOI References: [1] Bohigas, O; Giannoni, M.J, (), 1 [2] Haake, F, Quantum signatures of chaos, (2000), Springer Berlin [3] Pandey, A, Ann. phys. (NY), 119, 170, (1979) [4] Dyson, F, J. math. phys., 3, 1191, (1962) [5] Shukla, P, Phys. rev. E, 62, 2098, (2000) [6] Lasota, A; Mackey, M.C, Chaos, fractals and noise, (1994), Springer Berlin [7] Horsthemke, W; Lefever, R, Noise-induced transitions, (1984), Springer Berlin [8] Calogero, F, J. math. phys., 10, 2191, (1969) [9] Zambrini, J.C, Phys. rev. A, 33, 1532, (1986) [10] Blanchard, Ph; Garbaczewski, P, Phys. rev. E, 49, 3815, (1994) [11] Cufaro Petroni, N, Phys. lett. A, 245, 1, (1998) [12] Cufaro Petroni, N, J. phys. A, 32, 7489, (1999) [13] Karlin, S; Taylor, M.H, A second course in stochastic processes, (1981), Academic Press New York [14] Garbaczewski, P, Phys. rev. E, 59, 1498, (1999) [15] Pinsky, R, Ann. probab., 13, 693, (1985) [16] Risken, H, The fokker – planck equation, (1989), Springer Berlin [17] Wang, K.G, Z. phys. B, 99, 593, (1996) [18] Bhakta, A; Ruckenstein, E, J. chem. phys., 103, 7120, (1995) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.