×

zbMATH — the first resource for mathematics

Stochastic models of exotic transport. (English) Zbl 1059.82529
Summary: Non-typical transport phenomena may arise when randomly driven particles remain in an active relationship with the environment instead of being passive. If we attribute to Brownian particles an ability to induce alterations of the environment on suitable space-time scales, those in turn must influence their further movement. In that case a general feedback mechanism needs to be respected. By resorting to a specific choice of the particle-bath coupling, an enhanced (super-diffusion) or non-dispersive diffusion-type processes are found to exist in generically non-equilibrium contexts.

MSC:
82C70 Transport processes in time-dependent statistical mechanics
60K35 Interacting random processes; statistical mechanics type models; percolation theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Schimansky-Geier, L., Phys. lett. A, 207, 140, (1995)
[2] L. Schimansky-Geier, T. Pöschel (Eds.), Stochastic Dynamics, Lecture Notes in Physics, Vol. 484, Springer, Berlin, 1997. · Zbl 0896.60091
[3] Lam, L., Chaos, solitons fractals, 6, 267, (1995)
[4] Toner, J.; Tu, Y., Phys. rev. E, 58, 4828, (1998)
[5] Schweitzer, F., Biosystems, 41, 153, (1997)
[6] Dorfman, J.R., An introduction to chaos in non-equilibrium statistical mechanics, (1999), Cambridge University Press Cambridge · Zbl 0973.82001
[7] Garbaczewski, P., Phys. rev. E, 59, 1498, (1999)
[8] Bulgac, A.; Kuznetsov, D., Phys. lett. A, 151, 122, (1990)
[9] Hoover, W.G., Phys. lett. A, 255, 37, (1999)
[10] Jarzynski, C., Phys. rev. lett., 74, 2937, (1995)
[11] Morris, G.P.; Dettmann, C.P., Chaos, 8, 321, (1998)
[12] Gallavotti, G., Chaos, 8, 384, (1998)
[13] Gallavotti, G., Statistical mechanics, (1999), Springer Berlin · Zbl 0938.82032
[14] H.E. Stanley’s lecture at 36th Karpacz Winter School of Theoretical Physics, La̧dek Zdrój, 11-19 February 2000.
[15] Klimontovich, Yu.L., Usp. fiz. nauk (Russian edition), 164, 811, (1994)
[16] Garbaczewski, P., Phys. lett. A, 162, 129, (1992)
[17] Feistel, R.; Ebeling, W., Evolution of complex systems, self-organization, entropy and developement, (1989), Kluwer Dordrecht
[18] Garbaczewski, P., Phys. rev. E, 57, 569, (1998)
[19] Widder, M.E.; Titulauer, U.M., Physica A, 154, 452, (1989)
[20] Garbaczewski, P.; Vigier, J.P., Phys. rev. A, 46, 4634, (1992)
[21] Zambrini, J.C., J. math. phys., 27, 2307, (1986)
[22] Nelson, E., Quantum fluctuations, (1985), Princeton University Press Princeton · Zbl 0563.60001
[23] Garbaczewski, P.; Olkiewicz, R., J. math. phys., 37, 732, (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.