×

zbMATH — the first resource for mathematics

Rotational diffusions as seen by relativistic observers. (English) Zbl 0761.60077
Summary: The major unsolved problem in the framework of Nelson’s stochastic mechanics is addressed and an attempt is made to provide a description of relativistic spin-\({1\over 2}\) particles in terms of Markovian diffusions on \(S_ 3\). Random rotations are here labeled by the proper time of a particle in relativistic motion and are continuously distributed along a space-time trajectory followed by the particle in Minkowski space.

MSC:
60K40 Other physical applications of random processes
83B05 Observational and experimental questions in relativity and gravitational theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1007/BF00281477 · Zbl 0199.28201 · doi:10.1007/BF00281477
[2] DOI: 10.1002/prop.2190380604 · doi:10.1002/prop.2190380604
[3] DOI: 10.1103/PhysRevLett.50.1715 · doi:10.1103/PhysRevLett.50.1715
[4] DOI: 10.1103/PhysRevLett.2.435 · doi:10.1103/PhysRevLett.2.435
[5] DOI: 10.1063/1.528448 · Zbl 0678.70021 · doi:10.1063/1.528448
[6] DOI: 10.1088/0143-0807/1/4/010 · doi:10.1088/0143-0807/1/4/010
[7] DOI: 10.1063/1.1665609 · doi:10.1063/1.1665609
[8] DOI: 10.1103/PhysRev.176.1558 · doi:10.1103/PhysRev.176.1558
[9] Dahl J. P., Kon. Dansk. Vid. Selsk. Mat Fys. 39 pp 12– (1977)
[10] DOI: 10.1016/0375-9601(90)90655-8 · doi:10.1016/0375-9601(90)90655-8
[11] DOI: 10.1103/PhysRevLett.20.893 · doi:10.1103/PhysRevLett.20.893
[12] DOI: 10.1016/0375-9601(90)90625-X · doi:10.1016/0375-9601(90)90625-X
[13] DOI: 10.1063/1.525367 · doi:10.1063/1.525367
[14] DOI: 10.1143/PTP.81.916 · doi:10.1143/PTP.81.916
[15] DOI: 10.1016/0550-3213(90)90121-S · doi:10.1016/0550-3213(90)90121-S
[16] DOI: 10.1016/0003-4916(91)90045-A · doi:10.1016/0003-4916(91)90045-A
[17] Serva M., Ann. IHP 49 pp 415– (1988)
[18] DOI: 10.1063/1.528728 · Zbl 0712.46041 · doi:10.1063/1.528728
[19] DOI: 10.1063/1.528316 · Zbl 0689.70010 · doi:10.1063/1.528316
[20] DOI: 10.1016/0375-9601(92)90897-U · doi:10.1016/0375-9601(92)90897-U
[21] DOI: 10.1103/PhysRevD.23.2454 · doi:10.1103/PhysRevD.23.2454
[22] DOI: 10.1063/1.526767 · Zbl 0606.22018 · doi:10.1063/1.526767
[23] DOI: 10.1016/0003-4916(92)90061-P · doi:10.1016/0003-4916(92)90061-P
[24] DOI: 10.1103/PhysRevA.33.1532 · doi:10.1103/PhysRevA.33.1532
[25] DOI: 10.1063/1.527002 · Zbl 0623.60102 · doi:10.1063/1.527002
[26] DOI: 10.1007/BF00340014 · Zbl 0666.60073 · doi:10.1007/BF00340014
[27] DOI: 10.1016/0375-9601(92)90988-X · doi:10.1016/0375-9601(92)90988-X
[28] DOI: 10.1090/S0002-9947-1990-0986033-3 · doi:10.1090/S0002-9947-1990-0986033-3
[29] DOI: 10.1016/0370-1573(89)90146-4 · doi:10.1016/0370-1573(89)90146-4
[30] DOI: 10.1103/PhysRevLett.53.2355 · doi:10.1103/PhysRevLett.53.2355
[31] DOI: 10.1016/0550-3213(89)90408-2 · doi:10.1016/0550-3213(89)90408-2
[32] DOI: 10.1016/0370-2693(90)90985-F · doi:10.1016/0370-2693(90)90985-F
[33] DOI: 10.1142/S0217732388001859 · doi:10.1142/S0217732388001859
[34] DOI: 10.1142/S0217751X90000179 · doi:10.1142/S0217751X90000179
[35] DOI: 10.1142/S0217751X89001424 · doi:10.1142/S0217751X89001424
[36] DOI: 10.1016/0003-4916(89)90120-6 · doi:10.1016/0003-4916(89)90120-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.