×

zbMATH — the first resource for mathematics

Frictionless random dynamics: Hydrodynamical formalism. (English) Zbl 1005.70014
Summary: We investigate an undamped random phase-space dynamics in deterministic external force fields (conservative and magnetic ones). By employing the hydrodynamical formalism for those stochastic processes, we analyze microscopic kinetic-type “collision invariants” and their relationship to local conservation laws (moment equations) in the fully nonequilibrium context.

MSC:
70G10 Generalized coordinates; event, impulse-energy, configuration, state, or phase space for problems in mechanics
60H30 Applications of stochastic analysis (to PDEs, etc.)
82C40 Kinetic theory of gases in time-dependent statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Heinrichs, J., Phys. rev. E, 47, 3007, (1993)
[2] Masoliver, J., Phys. rev. A, 45, 706, (1992)
[3] Newman, A.L.; Newman, W.I., Phys. fluids B, 3, 4, (1991)
[4] Newman, A.L., Geophys. res. lett., 17, 1061, (1990)
[5] Ford, G.W.; Kac, M.; Mazur, P., J. math. phys., 6, 504, (1965)
[6] Ullersma, P., Physica, 32, 27, (1966)
[7] Dorfman, J.R., An introduction to chaos in nonequilibrium statistical mechanics, (1999), Cambridge University Press Cambridge · Zbl 0973.82001
[8] Lewis, J.T.; Thomas, L.C., How to make a heat Bath, () · Zbl 0326.60119
[9] Chandrasekhar, S., Rev. mod. phys., 15, 1, (1943)
[10] Nelson, E., Dynamical theories of Brownian motion, (1967), Princeton University Press Princeton · Zbl 0165.58502
[11] Garbaczewski, P., Physica A, 285, 187, (2000)
[12] Liboff, R.L., Kinetic theory, (1990), Prentice-Hall Englewood Cliffs, NJ · Zbl 0119.45502
[13] Garbaczewski, P., Phys. rev. E, 59, 1498, (1999)
[14] Klimontovich, Y.L., Statistical theory of open systems, (1995), Kluwer Dordrecht
[15] Czopnik, R.; Garbaczewski, P., Phys. rev. E, 63, 021105, (2001)
[16] Huang, K., Statistical mechanics, (1963), Wiley New York
[17] Schuss, Z., Theory and applications of stochastic differential equations, (1980), Wiley New York · Zbl 0439.60002
[18] Geilikman, B.T., Zh. eksp. teor. fiz, 17, 839, (1947)
[19] Guth, E., Adv. chem. phys., 15, 363, (1969)
[20] Balescu, R., Statistical dynamics. matter out of equilibrium, (1997), Imperial College Press London · Zbl 0997.82505
[21] Garbaczewski, P., (), 455
[22] Kolmogorov, A., Ann. math., 35, 116, (1934)
[23] Wentzell, A.D., A course in the theory of stochastic processes, (1981), McGraw-Hill New York · Zbl 0502.60001
[24] Taylor, J.B., Phys. rev. lett., 6, 262, (1961)
[25] Kurşunoǧlu, B., Ann. phys. (NY), 17, 259, (1962)
[26] Kaniadakis, G., Physica A, 307, 172, (2002)
[27] Takabayasi, T., Progr. theor. phys., 11, 341, (1954)
[28] Lee, Hai-Woong, Phys. rep., 259, 148, (1995)
[29] Garbaczewski, P.; Kondrat, G.; Olkiewicz, R., Phys. rev. E, 55, 1997, (1401)
[30] Baublitz, M., Phys. rev. A, 51, 1677, (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.