×

zbMATH — the first resource for mathematics

Quantum potential and random phase-space dynamics. (English) Zbl 0996.81006
Summary: We analyze limitations upon any kinetic theory inspired derivation of a probabilistic counterpart of the Schrödinger picture quantum dynamics. Neither dissipative nor non-dissipative stochastic phase space processes based on the white-noise (Brownian motion) kinetics are valid candidates unless additional constraints (a suitable form of the energy conservation law) are properly incorporated in the formalism.
MSC:
81P20 Stochastic mechanics (including stochastic electrodynamics)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Nelson, E., Dynamical theories of Brownian motion, (1967), Princeton Univ. Press Princeton · Zbl 0165.58502
[2] Garbaczewski, P.; Vigier, J.P., Phys. rev. A, 46, 4634, (1992)
[3] Garbaczewski, P., Phys. lett., 162, 129, (1992)
[4] Garbaczewski, P., Phys. rev. E, 59, 1498, (1999)
[5] Wallstrom, T., Phys. rev. A, 49, 1613, (1994)
[6] Holland, P.R., Quantum theory of motion, (1993), Cambridge Univ. Press Cambridge
[7] Czopnik, R.; Garbaczewski, P.
[8] Geilikman, B.T., Zh. exp. teor. phys., 17, 839, (1947)
[9] Zambrini, J.C., Phys. rev. A, 33, 1532, (1986)
[10] Kaniadakis, G., Physica A, 307, 172, (2002)
[11] Chandrasekhar, S., Rev. mod. phys., 15, 1, (1943)
[12] Klimontovich, Y.L., Statistical theory of open systems, (1995), Kluwer Academic Dordrecht
[13] Huang, K., Statistical mechanics, (1963), Wiley New York
[14] Garbaczewski, P., Physica A, 285, 187, (2000)
[15] Czopnik, R.; Garbaczewski, P., Phys. rev. E, 63, 021105, (2001)
[16] Newman, A.L.; Newman, W.I., Phys. fluids B, 3, 4, (1991)
[17] Kolmogorov, A., Ann. math., 35, 116, (1934)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.