×

An inverse modeling approach for predicting filled rubber performance. (English) Zbl 1442.65141

Summary: In this paper, a computational procedure combining experimental data and interphase inverse modeling is presented to predict filled rubber compound properties. The Fast Fourier Transformation (FFT) based numerical homogenization scheme is applied on the high quality filled rubber 3D Transmission Electron Microscope (TEM) image to compute its complex shear moduli. The 3D TEM filled rubber image is then compressed into a material microstructure database using a novel Reduced Order Modeling (ROM) technique, namely Self-consistent Clustering Analysis (a two-stage offline database creation from training and learning, followed by data compression via unsupervised learning, and online prediction approach), for improved efficiency and accuracy. An inverse modeling approach is formulated for quantitatively computing interphase complex shear moduli in order to understand the interphase behaviors. The two-stage SCA and the inverse modeling approach formulate a three-step prediction scheme for studying filled rubber, whose loss tangent curve can be computed in agreement with test data.

MSC:

65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
74G75 Inverse problems in equilibrium solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Li, Z.; Yu, H.; Jiang, B.; Poldneff, M.; Burkhart, C.; Liu, W. K.; Wang, Q. J., Interfacial properties of carbon-rubber interfaces investigated via indentation pull-out tests and the JKR theory, Tribol. Lett., 52, 155-161 (2013)
[2] Cheng, X.; Putz, K. W.; Wood, C. D.; Brinson, L. C., Characterization of local elastic modulus in confi ned polymer films via AFM indentation, Macromol. Rapid Commun., 36, 391-397 (2015)
[3] Yu, H.; Li, Z.; Jiang, B.; Poldneff, M.; Burkhart, C.; Liu, W. K.; Wang, Q. J., Determination of the viscoelastic interfacial properties between silica and SNR-based materials via a semi-empirical approach, Mech. Mater., 80, 1-12 (2015)
[4] Abberton, B. C.; Liu, W. K.; Keten, S., Anisotropy of shear relaxation in confined thin films of unentangled polymer melts, Macromolecules, 48, 7631-7639 (2015)
[5] Mélé, P.; Marceau, S.; Brown, D.; De Puydt, Y.; Albérola, N. D., Reinforcement effects in fractal-structure-filled rubber, Polymer, 43, 5577-5586 (2002)
[6] Kadowaki, H.; Hashimoto, G.; Okuda, H.; Higuchi, T.; Jinnai, H.; Seta, E.; Saguchi, T., Evaluation of the appropriate size of the finite element representative volume for filled rubber composite analyses (2016), http://dx.doi.org/10.1299/mej.16-00372
[7] Diani, J.; Gilormini, P.; Merckel, Y.; Vion-Loisel, F., Micromechanical modeling of the linear viscoelasticity of carbon-black filled styrene butadiene rubbers: The role of the filler-rubber interphase, Mech. Mater., 59, 65-72 (2013)
[8] Wang, M.-J., Effect of Polymer-filler and filler-filler interactions on dynamic properties of filled Vulcanizates, Rubber Chem. Technol., 71, 520-589 (1998)
[9] Wood, C. D.; Chen, L.; Burkhart, C.; Putz, K. W.; Torkelson, J. M.; Brinson, L. C., Measuring interphase stiffening effects in styrene-based polymeric thin films, Polymer, 75, 161-167 (2015)
[10] Wada, S.; Zhang, R.; Mannava, S. R.; Vasudevan, V. K.; Qian, D., Simulation-based prediction of cyclic failure in rubbery materials using nonlinear space-time finite element method coupled with continuum damage mechanics, Finite Elem. Anal. Des., 138, 21-30 (2018)
[11] Wu, C.; Koishi, M., Three-dimensional meshfree-enriched finite element formulation for micromechanical hyperelastic modeling of particulate rubber composites, Internat. J. Numer. Methods Engrg., 91, 1137-1157 (2012)
[12] Starr, F. W.; Schrøder, T. B.; Glotzer, S. C., Effects of a nanoscopic filler on the structure and dynamics of a simulated polymer melt and the relationship to ultrathin films, Phys. Rev. E, 64, 5 (2001)
[13] Li, Y.; Kröger, M.; Liu, W. K., Nanoparticle geometrical effect on structure, dynamics and anisotropic viscosity of polyethylene nanocomposites, Macromolecules, 45, 2099-2112 (2012)
[14] Arash, B.; Park, H. S.; Rabczuk, T., Mechanical properties of carbon nanotube reinforced polymer nanocomposites: A coarse-grained model, Composites B, 80, 92-100 (2015)
[15] Arash, B.; Park, H. S.; Rabczuk, T., Tensile fracture behavior of short carbon nanotube reinforced polymer composites: A coarse-grained model, Compos. Struct., 134, 981-988 (2015)
[16] Shi, C.; Fan, H.; Li, S., Interphase model for effective moduli of nanoparticle-reinforced composites, J. Eng. Mech., 141, Article 04015052 pp. (2015)
[17] Shi, C.; Tu, Q.; Fan, H.; Rios, C. A.O.; Li, S., Interphase models for nanoparticle-polymer composites, J. Nanomec. Micromech., 6, Article 04016003 pp. (2016)
[18] Jinnai, H.; Shinbori, Y.; Kitaoka, T.; Akutagawa, K.; Mashita, N.; Nishi, T., Three-dimensional structure of a nanocomposite material consisting of two kinds of nanofillers and rubbery matrix studied by transmission electron microtomography, Macromolecules, 40, 6758-6764 (2007)
[19] Jinnai, H.; Spontak, R. J.; Nishi, T., Transmission electron microtomography and polymer nanostructures, Macromolecules, 43, 1675-1688 (2010)
[20] Moulinec, H.; Suquet, P., A numerical method for computing the overall response of nonlinear composites with complex microstructure, Comput. Methods Appl. Mech. Engrg., 157, 69-94 (1998) · Zbl 0954.74079
[21] Figliuzzi, B.; Jeulin, D.; Faessel, M.; Willot, F.; Koishi, M.; Kowatari, N., Modelling the microstructure and the viscoelastic behaviour of carbon black filled rubber materials from 3D simulations, Tech. Mech., 32, 22-46 (2016)
[22] Gallican, V.; Brenner, R., Homogenization estimates for the effective response of fractional viscoelastic particulate composites, Contin. Mech. Thermodyn., 1-18 (2018)
[23] Liu, Z.; Moore, J. A.; Liu, W. K., An extended micromechanics method for probing interphase properties in polymer nanocomposites, J. Mech. Phys. Solids, 95, 663-680 (2016)
[24] Williams, M. L.; Landel, R. F.; Ferry, J. D., Mechanical properties of substances of high molecular weight - 19. The temperature dependence of relaxation mechanisms in Amorphous polymers and other glass-forming liquids, J. Am. Chem. Soc., 77, 3701-3707 (1955)
[25] Kawase, N.; Kato, M.; Nishioka, H.; Jinnai, H., Transmission electron microtomography without the “missing wedge” for quantitative structural analysis, Ultramicroscopy, 107, 8-15 (2007)
[26] Michel, J. C.; Moulinec, H.; Suquet, P., Effective properties of composite materials with periodic microstructure: A computational approach, Comput. Methods Appl. Mech. Engrg., 172, 109-143 (1999) · Zbl 0964.74054
[27] Kabel, M.; Böhlke, T.; Schneider, M., Efficient fixed point and Newton-Krylov solvers for FFT-based homogenization of elasticity at large deformations, Comput. Mech., 54, 1497-1514 (2014) · Zbl 1309.74013
[28] Moulinec, H.; Suquet, P., Comparison of FFT-based methods for computing the response of composites with highly contrasted mechanical properties, Phys. B Condens. Matter, 338, 58-60 (2003)
[29] de Geus, T. W.J.; Vondřejc, J.; Zeman, J.; Peerlings, R. H.J.; Geers, M. G.D., Finite strain FFT-based non-linear solvers made simple, Comput. Methods Appl. Mech. Engrg., 318, 412-430 (2017) · Zbl 1439.74045
[30] Liu, Z.; Bessa, M. A.; Liu, W. K., Self-consistent clustering analysis: An efficient multi-scale scheme for inelastic heterogeneous materials, Comput. Methods Appl. Mech. Engrg., 306, 319-341 (2016) · Zbl 1436.74070
[31] Liu, Z.; Kafka, O. L.; Yu, C.; Liu, W. K., Data-driven self-consistent clustering analysis of heterogeneous materials with crystal plasticity, (Adv. Comput. Plast. (2018), Springer) · Zbl 1493.74017
[32] Liu, Z.; Fleming, M.; Kam, W., Microstructural material database for self-consistent clustering analysis of elastoplastic strain softening materials, Comput. Methods Appl. Mech. Engrg., 330, 547-577 (2018) · Zbl 1439.74063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.