×

Discriminating between scaled and fractional Brownian motion via \(p\)-variation statistics. (English) Zbl 1397.62289

Summary: In recent years the anomalous diffusion processes have found various applications including polymers. The most common anomalous diffusion processes are continuous time random walk and fractional Brownian motion. However in the literature one can find different systems like fractional Lévy stable motion or scaled Brownian motion. A most common tool for anomalous diffusion behavior recognition is the time-averaged mean square displacement. However, this statistics has the same behavior for fractional and scaled Brownian motions. Therefore there is need to apply different approach in order to discriminate between those two anomalous diffusion processes. One of the possibility is the \(p\)-variation statistics which demonstrates different behavior for fractional and scaled Brownian motions. In this paper we prove the formula for \(p\)-variation of scaled Brownian motion and compare it to the known formula of \(p\)-variation for fractional Brownian motion. Moreover, we show how to apply them to real trajectories analysis in order to recognize the proper anomalous diffusion model. The theoretical results are supported by simulated trajectories.

MSC:

62M07 Non-Markovian processes: hypothesis testing
60G22 Fractional processes, including fractional Brownian motion
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Barkai, E; Garini, Y; Metzler, R, Strange kinetics of single molecules in living cells, Phys. Today, 65, 29, (2012) · doi:10.1063/PT.3.1677
[2] Meroz, Y; Sokolov, IM, A toolbox for determining subdiffusive mechanisms, Phys. Rep., 573, 1-29, (2015) · doi:10.1016/j.physrep.2015.01.002
[3] Metzler, R; Koren, T; Broek, B; Wuite, GJ; Lomholt, MA, And did he search for you, and could not find you?, J. Phys. A Math. Theor., 42, 434005, (2009) · Zbl 1186.68149 · doi:10.1088/1751-8113/42/43/434005
[4] Saxton, MJ, Wanted: a positive control for anomalous subdiffusion, Biophys. J ., 103, 2411-2422, (2012) · doi:10.1016/j.bpj.2012.10.038
[5] Paul, W, Anomalous diffusion in polymer melts, Chem. Phys., 284, 59-66, (2002) · doi:10.1016/S0301-0104(02)00536-0
[6] Pogany, AG, Anomalous diffusion of water in glassy polymers, Polymer, 17, 690-694, (1976) · doi:10.1016/0032-3861(76)90209-3
[7] Semenov, AN; Meyer, H, Anomalous diffusion in polymer monolayers, Soft Matter, 9, 4249-4272, (2013) · doi:10.1039/c3sm27839e
[8] Yilmaz, l; Tosun, I; Gurkan, T’; Gulcat, U, Anomalous diffusion of liquids in glassy polymers, Math. Model., 4, 535-543, (1983) · Zbl 0562.76091 · doi:10.1016/0270-0255(83)90013-1
[9] Metzler, R; Jeon, JH; Cherstvy, AG; Barkai, E, Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking, Phys. Chem. Chem. Phys., 16, 24128-24164, (2014) · doi:10.1039/C4CP03465A
[10] Golding, I; Cox, EC, Physical nature of bacterial cytoplasm, Phys. Rev. Lett., 96, 098102, (2006) · doi:10.1103/PhysRevLett.96.098102
[11] Jeon, JH; Metzler, R, Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries, Phys. Rev. E, 81, 021103, (2010) · doi:10.1103/PhysRevE.81.021103
[12] Guigas, G; Kalla, C; Weiss, M, Probing the nanoscale viscoelasticity of intracellular fluids in living cells, Biophys. J ., 93, 316, (2007) · doi:10.1529/biophysj.106.099267
[13] Hellmann, M; Klafter, J; Heermann, DW; Weiss, MJ, Challenges in determining anomalous diffusion in crowded fluids, J. Phys.: Condens. Matter, 23, 234113, (2011)
[14] Kepten, E; Bronshtein, I; Garini, Y, Ergodicity convergence test suggests telomere motion obeys fractional dynamics, Phys. Rev. E, 83, 041919, (2011) · doi:10.1103/PhysRevE.83.041919
[15] Szymanski, J; Weiss, M, Elucidating the origin of anomalous diffusion in crowded fluids, Phys. Rev. Lett., 103, 038102, (2009) · doi:10.1103/PhysRevLett.103.038102
[16] Jeon, JH; Chechkin, AV; Metzler, R, Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion, Phys. Chem. Chem. Phys., 16, 1581115817, (2014) · doi:10.1039/C4CP02019G
[17] Safdari, H; Chechkin, AV; Jafari, GR; Metzler, R, Aging scaled Brownian motion, Phys. Rev. E, 91, 042107, (2015) · doi:10.1103/PhysRevE.91.042107
[18] Thiel, F; Sokolov, IM, Scaled Brownian motion as a mean-field model for continuous-time random walks, Phys. Rev. E, 89, 012115, (2014) · doi:10.1103/PhysRevE.89.012115
[19] Burnecki, K; Weron, A, Fractional lvy stable motion can model subdiffusive dynamics, Phys. Rev. E, 82, 021130, (2010) · doi:10.1103/PhysRevE.82.021130
[20] Bronstein, I; Israel, Y; Kepten, E; Mai, S; Shav-Tal, Y; Barkai, E; Garini, Y, Transient anomalous diffusion of telomeres in the nucleus of Mammalian cells, Phys. Rev. Lett., 103, 018102, (2009) · doi:10.1103/PhysRevLett.103.018102
[21] Jeon, JH; Tejedor, V; Burov, S; Barkai, E; Selhuber-Unkel, C; Berg-Sørensen, K; Oddershede, L; Metzler, R, In vivo anomalous diffusion and weak ergodicity breaking of lipid granules, Phys. Rev. Lett., 106, 048103, (2011) · doi:10.1103/PhysRevLett.106.048103
[22] Burnecki, K; Sikora, G; Weron, A, Fractional process as a unified model for subdiffusive dynamics in experimental data, Phys. Rev. E, 86, 041912, (2012) · doi:10.1103/PhysRevE.86.041912
[23] Burnecki, K; Weron, A, Algorithms for testing of fractional dynamics: a practical guide to ARFIMA modelling, J. Stat. Mech. Theory Exp., 2014, p10036, (2014) · doi:10.1088/1742-5468/2014/10/P10036
[24] Sikora, G; Burnecki, K; Wyłomańska, A, Mean-squared displacement statistical test for fractional Brownian motion, Phys. Rev. E, 95, 032110, (2017) · doi:10.1103/PhysRevE.95.032110
[25] Burnecki, K; Kepten, E; Janczura, J; Bronshtein, I; Garini, Y; Weron, A, Universal algorithm for identification of fractional Brownian motion: a case of telomere subdiffusion, Biophys. J ., 103, 18391847, (2012) · doi:10.1016/j.bpj.2012.09.040
[26] Magdziarz, M; Weron, A; Burnecki, K; Klafter, J, Fractional Brownian motion versus the continuous-time random walk: a simple test for subdiffusive dynamics, Phys. Rev. Lett., 103, 180602, (2009) · doi:10.1103/PhysRevLett.103.180602
[27] Tejedor, V; Bnichou, O; Voituriez, R; Jungmann, R; Simmel, F; Selhuber-Unkel, C; Oddershede, LB; Metzler, R, Quantitative analysis of single particle trajectories: mean maximal excursion method, Biophys. J ., 98, 1364-1372, (2010) · doi:10.1016/j.bpj.2009.12.4282
[28] Magdziarz, M; Klafter, J, Detecting origins of subdiffusion. P-variation test for confined systems, Phys. Rev. E, 82, 011129, (2010) · doi:10.1103/PhysRevE.82.011129
[29] Fuliński, A, Fractional Brownian motions: memory, diffusion velocity, and correlation functions, J. Phys. A: Math. Theor., 50, 054002, (2017) · Zbl 1357.92025 · doi:10.1088/1751-8121/50/5/054002
[30] Lim, SC; Muniandy, SV, Self-similar Gaussian processes for modeling anomalous diffusion, Phys. Rev. E, 66, 021114, (2002) · doi:10.1103/PhysRevE.66.021114
[31] Mandelbrot, BB; Ness, JV, Fractional Brownian motion, fractional noises and applications, SIAM Rev., 10, 422-438, (1968) · Zbl 0179.47801 · doi:10.1137/1010093
[32] Samko, S.G., Kilbas, A.A., Maritchev, D.I.: Integrals and Derivatives of the Fractional Order and Some of Their Applications. Gordon and Breach, Amsterdam (1993) · Zbl 0818.26003
[33] Chung, K.: A Course in Probability Theory, 3rd edn. Academic Press, New York (2000) · Zbl 0980.60001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.