×

On the Boolean model of Wiener sausages. (English) Zbl 1149.60049

Consider a \(d\)-dimensional Brownian path \((W_t)_{t\in[0,T]}\) started at \(0\) and its corresponding Wiener sausage of radius \(r>0\) \[ S_{r,T}=\{y\in \mathbb{R}^d: \|y-W_t\|\leq r\text{ for some }t\in[0,T]\}. \] The Boolean model is the random set \(\Xi\subset\mathbb{R}^d\) obtained as the union of Wiener sausages when each point of a homogeneous Poisson point process serves as the starting point of one Brownian path.
By symmetry, the two-point function \[ C(h)=\mathbf{P}[\{0,x\}\subset\Xi]\qquad\text{for \(\|x\|=h\)} \] only depends on the norm of the vector \(x\). It can be computed using the one-point function \(p=\mathbf{P}[0\in\Xi]\), the expected volume of \(S_{r,T}\) (for both quantities there are more or less explicit formulas) and the expected volume of \(S_{r,T}\cap(x+S_{r,T})\). The authors use a Monte Carlo scheme to estimate this latter volume. To this end the Brownian paths are approxiated by random walks with normally distributed increments. They present the estimated curves \(h\mapsto C(h)\) for different values of \(T\) rather than providing numerical values with errors bounds.
As an alternative to computing the expected volume of \(S_{r,T}\cap (x+S_{r,T})\), it is enough to compute the expected volume of \(S_{r,T}\cup (x+S_{r,t})\). This, however, has a representation as the integral \[ \int_{\mathbb{R}^d}u(T,y)\,dy, \] where \(u(t,y)\) is the solution of the heat equation with boundary values \(u(t,y)=1\) for \(\|y\|\leq r\) or \(\|y-x\|\leq r\) and \(u(0,y)=0\) for all other \(y\). The authors propagate a finite element scheme to compute \(u\) which is more efficient than the Monte Carlo scheme considered above.

MSC:

60J65 Brownian motion
60D05 Geometric probability and stochastic geometry
65C05 Monte Carlo methods
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs

Software:

na14
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. Alberty, C. Carstensen, and S. Funken, ”Remarks around 50 lines of Matlab: short finite element implementation,” Numerical Algorithms vol. 20 pp. 117–137, 1999. · Zbl 0938.65129 · doi:10.1023/A:1019155918070
[2] A. M. Berezhkovskii, Yu. A. Makhnovskii, and R. A. Suris, ”Wiener sausage volume moments,” Journal of Statistical Physics vol. 57(1–2) pp. 333–346, 1989. · doi:10.1007/BF01023647
[3] P. Billingsley, Convergence of Probability Measures, Wiley: New York, 1999. · Zbl 0944.60003
[4] D. Braess, Finite Elements, Cambridge University Press: Cambridge, MA, 2001. · Zbl 0976.65099
[5] P. G. Ciarlet, ”The finite element method for elliptic problems,” In Classics in Applied Mathematics, vol. 40, SIAM: Philadelphia, PA, 2002. · Zbl 0999.65129
[6] J. L. Doob, ”A probability approach to the heat equation,” Transactions of the American Mathematical Society vol. 80 pp. 216–280, 1955. · Zbl 0068.32705 · doi:10.1090/S0002-9947-1955-0079376-0
[7] S. Funken, ”Equation based modeling,” Simulation News Europe vol. 37 pp. 11–14, 2003.
[8] L. Heinrich and I. S. Molchanov, ”Central limit theorem for a class of random measures associated with germ–grain models,” Advances in Applied Probability vol. 31 pp. 283–314, 1999. · Zbl 0941.60025 · doi:10.1239/aap/1029955136
[9] G. A. Hunt, ”Some theorems concerning Brownian motion,” Transactions of the American Mathematical Society vol. 81 pp. 294–319, 1956. · Zbl 0070.36601 · doi:10.1090/S0002-9947-1956-0079377-3
[10] G. Kesidis, T. Konstantopoulos, and S. Phoha, ”Surveillance coverage of sensor networks unter a random mobility strategy.” In IEEE Sensors Conference, Toronto, October, 2003. Proceedings paper.
[11] A. Kolmogoroff and M. Leontowitsch, ”Zur Berechnung der mittleren Brownschen Fläche,” Physikalische Zeitschrift der Sowjetunion vol. 4 pp. 1–13, 1933. · Zbl 0007.21902
[12] G. Last, ”On mean curvature functions of Brownian paths,” Stochastic Process and Their Applications vol. 116 pp. 1876–1891, 2006. · Zbl 1107.60049 · doi:10.1016/j.spa.2006.05.003
[13] G. Matheron, Random Sets and Integral Geometry, Wiley: New York, 1975. · Zbl 0321.60009
[14] I. S. Molchanov, Statistics of the Boolean Model for Practitioners and Mathematicians, Wiley: Chichester, 1997. · Zbl 0878.62068
[15] J. Rataj, V. Schmidt, and E. Spodarev, ”On the expected surface area of the Wiener sausage.” MathematischeNachricten, 2007. Preprint available at http://www.mathematik.uni-ulm.de/stochastik/personal/spodarev/publications/publications.html , 2006 (to appear). · Zbl 1166.60049
[16] R. Schneider and W. Weil, ”Stochastische Geometrie.” In Teubner Skripten zur Mathematischen Stochastik. Teubner, Stuttgart, 2000. · Zbl 0964.52009
[17] S. Shakkottai, ”Asymptotics of query strategies over a sensor network.” In IEEE Transactions on Automatic Control, June, 2005. · Zbl 1365.90151
[18] F. Spitzer, ”Electrostatic capacity, heat flow, and Brownian motion,” Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete vol. 3 pp. 110–121, 1964. · Zbl 0126.33505 · doi:10.1007/BF00535970
[19] L. L. Stachó, ”On the volume function of parallel sets,” Acta Scientiarum Mathematicarum vol. 38 pp. 365–374, 1976. · Zbl 0342.52014
[20] D. Stoyan, W. S. Kendall, and J. Mecke, Stochastic Geometry and Its Applications, 2nd edn, Wiley: Chichester, 1995. · Zbl 0838.60002
[21] A. S. Sznitman, ”Some bounds and limiting results for the measure of Wiener sausage of small radius associated with elliptic diffusions,” Stochastic Processes and Their Applications vol. 25 pp. 1–25, 1987. · Zbl 0628.60080 · doi:10.1016/0304-4149(87)90187-6
[22] A.-S. Sznitman, Brownian Motion, Obstacles and Random Media, Springer: Berlin, 1998. · Zbl 0973.60003
[23] R. Černý and J. Rataj, ”How big is the Wiener sausage?” In R. Lechnerová, I. Saxl, and V. Beneš (eds.) Proceedings of the International Conference on Stereology, Spatial Statistics and Stochastic Geometry, Prague, pp. 75–80, 2006.
[24] D.-Y. Yang, Yu. A. Makhnovskii, S.-Y. Sheu, and S. H. Lin, ”Simulation of the Wiener sausage,” Physical Review. E vol. 62(3) pp. 3116–3120, 2000. · doi:10.1103/PhysRevE.62.3116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.