×

Numerical simulation of the surface hardening of steel. (English) Zbl 1073.76597

Summary: We discuss a model that is capable of describing the solid-solid phase transitions in steel. It consists of a system of ordinary differential equations for the volume fractions of the occuring phases coupled with a nonlinear energy balance equation to take care of the latent heats of the phase changes. This model is applied to simulate surface heat treatments, which play an important role in the manufacturing of steel. Two different technologies are considered: laser and induction hardening. In the latter case the model has to be extended by Maxwell’s equations. Finally, we present numerical simulations of laser and induction hardening applied to the steel 42CrMo4.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76T99 Multiphase and multicomponent flows
80A22 Stefan problems, phase changes, etc.
78A60 Lasers, masers, optical bistability, nonlinear optics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bossavit, A.(1985), ”Free boundaries in induction heating”, Control Cybern., Vol. 14, pp. 69-96. · Zbl 0615.35086
[2] DOI: 10.1142/S0218202593000400 · Zbl 0801.65120 · doi:10.1142/S0218202593000400
[3] Energie- und Betriebswirtschaftsstelle des Vereins Deutscher Eisenhüttenleute (1968), Anhaltszahlen für die Wärmewirtschaft in Eisenhüttenwerken, Verlag Stahleisen mbH, Düsseldorf.
[4] DOI: 10.1017/S0956792500002485 · Zbl 0858.34006 · doi:10.1017/S0956792500002485
[5] Fuhrmann, J. (1996a), ”On numerical solution methods for nonlinear parabolic problems”, Proceedings of the 1st GAMM-Seminar on Modelling and Computation in Environmental Sciences, Stuttgart, 12-13 October 1995, to appear in Notes Numer. Fluid Mech.
[6] Fuhrmann, J. (1996b), ”Outlines of a modular algebraic multigrid method”, in Axelsson, O. and Polman,B. (Eds), Proceedings of the Conference on Algebraic Multilevel Iteration Methods, Nijmegen, 13-15 June.
[7] DOI: 10.1093/imamat/54.1.31 · Zbl 0830.65126 · doi:10.1093/imamat/54.1.31
[8] DOI: 10.1016/1359-6454(96)00084-5 · doi:10.1016/1359-6454(96)00084-5
[9] DOI: 10.1002/(SICI)1099-1476(19970110)20:1<59::AID-MMA849>3.0.CO;2-Z · Zbl 0876.35118 · doi:10.1002/(SICI)1099-1476(19970110)20:1<59::AID-MMA849>3.0.CO;2-Z
[10] Hömberg, D. and Sokolowski, J. (1998), ”Optimal control of laser hardening”, Adv. Math. Sci. Appl., Vol. 8, pp. 911-28. · Zbl 0937.35186
[11] DOI: 10.1002/nme.1620300414 · Zbl 0723.65137 · doi:10.1002/nme.1620300414
[12] DOI: 10.1016/0001-6160(84)90211-6 · doi:10.1016/0001-6160(84)90211-6
[13] Max-Planck-Institut für Eisenforschung und der Werkstoffausschuss des Vereins Deutscher Eisenhüttenleute (1961), Atlas zur Wärmebehandlung der Stähle, Teil I+II, Verlag Stahleisen mbH, Düsseldorf.
[14] Mazhukin, V.I. and Samarskii, A.A. (1994), ”Mathematical modeling in the technology of laser treatments of materials”, Surveys Math. Indust., Vol. 4, pp. 85-149. · Zbl 0805.35165
[15] DOI: 10.1142/S021820259200017X · Zbl 0763.35093 · doi:10.1142/S021820259200017X
[16] Schmelzer, I. (1993), 3D Anisotropic Grid Generation with Intersection-based Geometry Interface, IMA preprint series no. 1180.
[17] Tiba, D. and Neittaanmaki, P. (1994), ”Optimal control of nonlinear parabolic systems”, Monographs Textbooks Pure Appl. Math., Vol. 179, M. Dekker, New York, NY.
[18] DOI: 10.1016/0001-6160(87)90270-7 · doi:10.1016/0001-6160(87)90270-7
[19] DOI: 10.1093/imamat/39.2.143 · Zbl 0652.73050 · doi:10.1093/imamat/39.2.143
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.