×

Global behavior of solutions in a predator-prey cross-diffusion model with cannibalism. (English) Zbl 1435.92051

Summary: The global asymptotic behavior of solutions in a cross-diffusive predator-prey model with cannibalism is studied in this paper. Firstly, the local stability of nonnegative equilibria for the weakly coupled reaction-diffusion model and strongly coupled cross-diffusion model is discussed. It is shown that the equilibria have the same stability properties for the corresponding ODE model and semilinear reaction-diffusion model, but under suitable conditions on reaction coefficients, cross-diffusion-driven Turing instability occurs. Secondly, the uniform boundedness and the global existence of solutions for the model with SKT-type cross-diffusion are investigated when the space dimension is one. Finally, the global stability of the positive equilibrium is established by constructing a Lyapunov function. The result indicates that, under certain conditions on reaction coefficients, the model has no nonconstant positive steady state if the diffusion matrix is positive definite and the self-diffusion coefficients are large enough.

MSC:

92D25 Population dynamics (general)
35K57 Reaction-diffusion equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Magnússon, K. G., Destabilizing effect of cannibalism on a structured predator-prey system, Mathematical Biosciences, 155, 1, 61-75 (1999) · Zbl 0943.92030 · doi:10.1016/s0025-5564(98)10051-2
[2] van den Bosch, F.; de Roos, A. M.; Gabriel, W., Cannibalism as a life boat mechanism, Journal of Mathematical Biology, 26, 6, 619-633 (1988) · Zbl 0714.92019 · doi:10.1007/bf00276144
[3] Gurtin, M. E.; Levine, D. S., On populations that cannibalize their Young, SIAM Journal on Applied Mathematics, 42, 1, 94-108 (1982) · Zbl 0501.92021 · doi:10.1137/0142008
[4] Diekmann, O.; Nisbet, R. M.; Gurney, W. S. C.; van den Bosch, F., Simple mathematical models for cannibalism: a critique and a new approach, Mathematical Biosciences, 78, 1, 21-46 (1986) · Zbl 0587.92020 · doi:10.1016/0025-5564(86)90029-5
[5] Hastings, A., Cycles in cannibalistic egg-larval interactions, Journal of Mathematical Biology, 24, 6, 651-666 (1987) · Zbl 0608.92014 · doi:10.1007/bf00275508
[6] Kohlmeier, C.; Ebenhöh, W., The stabilizing role of cannibalism in a predator-prey system, Bulletin of Mathematical Biology, 57, 3, 401-411 (1995) · Zbl 0814.92016 · doi:10.1007/bf02460632
[7] van den Bosch, F.; Gabriel, W., Cannibalism in an age-structured predator-prey system, Bulletin of Mathematical Biology, 59, 3, 551-567 (1997) · Zbl 0896.92029 · doi:10.1007/bf02459465
[8] Murray, J. D., Mathematical Biology I: An Introduction (2003), New York, NY, USA: Springer, New York, NY, USA · Zbl 1006.92002
[9] Shigesada, N.; Kawasaki, K.; Teramoto, E., Spatial segregation of interacting species, Journal of Theoretical Biology, 79, 1, 83-99 (1979) · doi:10.1016/0022-5193(79)90258-3
[10] Shim, S.-A., Uniform boundedness and convergence of solutions to the systems with cross-diffusions dominated by self-diffusions, Nonlinear Analysis: Real World Applications, 4, 1, 65-86 (2003) · Zbl 1015.35020 · doi:10.1016/s1468-1218(02)00014-7
[11] Choi, Y. S.; Lui, R.; Yamada, Y., Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion, Discrete & Continuous Dynamical Systems-A, 10, 3, 719-730 (2004) · Zbl 1047.35054 · doi:10.3934/dcds.2004.10.719
[12] Pang, P. Y. H.; Wang, M., Strategy and stationary pattern in a three-species predator-prey model, Journal of Differential Equations, 200, 2, 245-273 (2004) · Zbl 1106.35016 · doi:10.1016/j.jde.2004.01.004
[13] Fu, S. M.; Wen, Z. J.; Cui, S. B., On global solutions for the three-species food-chain model with cross-diffusion, Acta Mathematica Sinica-A, 50, 75-88 (2007) · Zbl 1121.35326
[14] Fu, S. M.; Yang, X. L., Nonconstant positive steady states of a predator-prey model with cannibalism, International Journal of Information and Systems Sciences, 8, 250-260 (2012) · Zbl 1346.92054
[15] Fu, S.; Zhang, L.; Hu, P., Global behavior of solutions in a Lotka-Volterra predator-prey model with prey-stage structure, Nonlinear Analysis: Real World Applications, 14, 5, 2027-2045 (2013) · Zbl 1292.35042 · doi:10.1016/j.nonrwa.2013.02.007
[16] Zhang, L.; Fu, S., Global bifurcation for a Holling-Tanner predator-prey model with prey-taxis, Nonlinear Analysis: Real World Applications, 47, 460-472 (2019) · Zbl 1408.92025 · doi:10.1016/j.nonrwa.2018.12.002
[17] Dubey, B.; Das, B.; Hussain, J., A predator-prey interaction model with self and cross-diffusion, Ecological Modelling, 141, 1-3, 67-76 (2001) · doi:10.1016/s0304-3800(01)00255-1
[18] Zhang, F.; Chen, Y.; Li, J., Dynamical analysis of a stage-structured predator-prey model with cannibalism, Mathematical Biosciences, 307, 33-41 (2019) · Zbl 1409.92217 · doi:10.1016/j.mbs.2018.11.004
[19] Buonomo, B.; Lacitignola, D., On the stabilizing effect of cannibalism in stage structured population models, Mathematical Biosciences and Engineering, 3, 717-731 (2006) · Zbl 1113.92051 · doi:10.3934/mbe.2006.3.717
[20] Brown, K. J.; Dunne, P. C.; Gardner, R. A., A semilinear parabolic system arising in the theory of superconductivity, Journal of Differential Equations, 40, 2, 232-252 (1981) · Zbl 0431.35054 · doi:10.1016/0022-0396(81)90020-6
[21] Simonett, G., Center manifolds for quasilinear reaction-diffusion systems, Differential and Integral Equations, 8, 753-796 (1995) · Zbl 0815.35054
[22] Drangeid, A.-K., The principle of linearized stability for quasilinear parabolic evolution equations, Nonlinear Analysis: Theory, Methods & Applications, 13, 9, 1091-1113 (1989) · Zbl 0694.35009 · doi:10.1016/0362-546x(89)90097-7
[23] Liu, P.; Shi, J.; Wang, Z.-A., Pattern formation of the attraction-repulsion Keller-Segel system, Discrete & Continuous Dynamical Systems-B, 18, 10, 2597-2625 (2013) · Zbl 1277.35048 · doi:10.3934/dcdsb.2013.18.2597
[24] Amann, H., Dynamic theory of quasilinear parabolic equations-I. Abstract evolution equations, Nonlinear Analysis: Theory, Methods & Applications, 12, 9, 895-919 (1988) · Zbl 0666.35043 · doi:10.1016/0362-546x(88)90073-9
[25] Amann, H., Dynamic theory of quasilinear parabolic equations-II. Reaction-diffusion, Differential and Integral Equations, 3, 13-75 (1990) · Zbl 0729.35062
[26] Amann, H., Dynamic theory of quasilinear parabolic systems, Mathematische Zeitschrift, 202, 2, 219-250 (1989) · Zbl 0702.35125 · doi:10.1007/bf01215256
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.