×

Special birational transformations of type \((2,1)\). (English) Zbl 1391.14028

Let \(\Phi:\mathbb P ^n \dashrightarrow Z\subset \mathbb P ^N\) be a dominant bi-rational map to a smooth variety \(Z\) such that \(\rho (Z)=1\) then \(\Phi\) is a special birational transformation of type \((a,b)\) if \(\Phi\) is given by a linear system belonging to \(\mathcal O _{\mathbb P ^n}(a)\), \(\Phi ^{-1}\) is is given by a linear system belonging to \(\mathcal O _Z(b)\) and the base locus of \(\Phi\) is an irreducible nonsingular subvariety \(S\subset \mathbb P ^n\). In this paper the authors classify special birational transformations of type \((2,1)\).

MSC:

14E07 Birational automorphisms, Cremona group and generalizations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Alzati, Alberto; Sierra, Jos\'e Carlos, Quadro-quadric special birational transformations of projective spaces, Int. Math. Res. Not. IMRN, 1, 55-77 (2015) · Zbl 1316.14030
[2] Ein, Lawrence; Shepherd-Barron, Nicholas, Some special Cremona transformations, Amer. J. Math., 111, 5, 783-800 (1989) · Zbl 0708.14009 · doi:10.2307/2374881
[3] Fu, Baohua; Hwang, Jun-Muk, Classification of non-degenerate projective varieties with non-zero prolongation and application to target rigidity, Invent. Math., 189, 2, 457-513 (2012) · Zbl 1260.14050 · doi:10.1007/s00222-011-0369-9
[4] Griffiths, Phillip; Harris, Joseph, Principles of algebraic geometry, Pure and Applied Mathematics, xii+813 pp. (1978), Wiley-Interscience [John Wiley &Sons], New York · Zbl 0836.14001
[5] Hartshorne, Robin, Algebraic geometry, Graduate Texts in Mathematics, No. 52, xvi+496 pp. (1977), Springer-Verlag, New York-Heidelberg · Zbl 0367.14001
[6] Hwang, Jun-Muk; Mok, Ngaiming, Prolongations of infinitesimal linear automorphisms of projective varieties and rigidity of rational homogeneous spaces of Picard number 1 under K\"ahler deformation, Invent. Math., 160, 3, 591-645 (2005) · Zbl 1071.32022 · doi:10.1007/s00222-004-0417-9
[7] Ionescu, Paltin; Russo, Francesco, Conic-connected manifolds, J. Reine Angew. Math., 644, 145-157 (2010) · Zbl 1200.14078 · doi:10.1515/CRELLE.2010.054
[8] Ionescu, Paltin; Russo, Francesco, Varieties with quadratic entry locus. II, Compos. Math., 144, 4, 949-962 (2008) · Zbl 1149.14041 · doi:10.1112/S0010437X08003539
[9] Iskovskikh, V. A.; Prokhorov, Yu. G., Fano varieties. Algebraic geometry, V, Encyclopaedia Math. Sci. 47, 1-247 (1999), Springer, Berlin · Zbl 0912.14013
[10] Ivey, Thomas A.; Landsberg, J. M., Cartan for beginners: differential geometry via moving frames and exterior differential systems, Graduate Studies in Mathematics 61, xiv+378 pp. (2003), American Mathematical Society, Providence, RI · Zbl 1105.53001
[11] Landsberg, J. M., On second fundamental forms of projective varieties, Invent. Math., 117, 2, 303-315 (1994) · Zbl 0840.14025 · doi:10.1007/BF01232243
[12] Mok, Ngaiming, Recognizing certain rational homogeneous manifolds of Picard number 1 from their varieties of minimal rational tangents. Third International Congress of Chinese Mathematicians. Part 1, 2, AMS/IP Stud. Adv. Math., 42, pt.  1 2, 41-61 (2008), Amer. Math. Soc., Providence, RI · Zbl 1182.14042
[13] Mukai, Shigeru, Biregular classification of Fano \(3\)-folds and Fano manifolds of coindex \(3\), Proc. Nat. Acad. Sci. U.S.A., 86, 9, 3000-3002 (1989) · Zbl 0679.14020 · doi:10.1073/pnas.86.9.3000
[14] Novelli, Carla; Occhetta, Gianluca, Projective manifolds containing a large linear subspace with nef normal bundle, Michigan Math. J., 60, 2, 441-462 (2011) · Zbl 1229.14015 · doi:10.1307/mmj/1310667984
[15] Pasquier, Boris, On some smooth projective two-orbit varieties with Picard number 1, Math. Ann., 344, 4, 963-987 (2009) · Zbl 1173.14028 · doi:10.1007/s00208-009-0341-9
[16] Russo, Francesco, On a theorem of Severi, Math. Ann., 316, 1, 1-17 (2000) · Zbl 0993.14019 · doi:10.1007/s002080050001
[17] Russo, Francesco, Varieties with quadratic entry locus. I, Math. Ann., 344, 3, 597-617 (2009) · Zbl 1170.14040 · doi:10.1007/s00208-008-0318-0
[18] Sato, Eiichi, Projective manifolds swept out by large-dimensional linear spaces, Tohoku Math. J. (2), 49, 3, 299-321 (1997) · Zbl 0917.14026 · doi:10.2748/tmj/1178225105
[19] Zak, F. L., Tangents and secants of algebraic varieties, Translations of Mathematical Monographs 127, viii+164 pp. (1993), American Mathematical Society, Providence, RI · Zbl 0795.14018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.