×

An adaptive two-dimensional wavelet-vaguelette algorithm for the computation of flame balls. (English) Zbl 0991.80514

Summary: This paper is concerned with the numerical simulation of two-dimensional flame balls. We describe a Galerkin-type discretization in an adaptive basis of orthogonal wavelets. The solution is represented by means of a reduced basis being adapted in each time step. This algorithm is applied to compute the evolution of circular and elliptic thermodiffusive flames. In particular, we study the influence of the Lewis number, the strength of radiative losses and of the initial radius. The results show different scenarios. We find repeated splitting of the flame ball which is studied in some detail, extinction after excessive growth and also obtain quasi-steady flame balls.

MSC:

80M25 Other numerical methods (thermodynamics) (MSC2010)
80A25 Combustion
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bertoluzza S, Comput. Appl. Math 13 pp 13– (1994)
[2] Buckmaster J, Annual Reviews in Fluid Mechanics 25 pp 21– (1993)
[3] Buckmaster, J, Gessman, R and Ronney, P. The three-dimensional dynamics of flame-balls. 24th Int. Symp. on Combustion. pp.53–9. Pittsburgh, PA: Combustion Institute.
[4] DOI: 10.1016/0010-2180(90)90147-J · doi:10.1016/0010-2180(90)90147-J
[5] DOI: 10.1016/0010-2180(91)90015-4 · doi:10.1016/0010-2180(91)90015-4
[6] DOI: 10.1016/0010-2180(93)90024-W · doi:10.1016/0010-2180(93)90024-W
[7] DOI: 10.1080/00102208308923718 · doi:10.1080/00102208308923718
[8] DOI: 10.1080/00102206908952222 · doi:10.1080/00102206908952222
[9] DOI: 10.1137/0733047 · Zbl 0856.65115 · doi:10.1137/0733047
[10] Chui C K, An Introduction to Wavelets (1992) · Zbl 0925.42016
[11] DOI: 10.1007/BF01198005 · Zbl 0777.34015 · doi:10.1007/BF01198005
[12] DOI: 10.1017/S0962492900002713 · doi:10.1017/S0962492900002713
[13] Daubechies I, Ten Lectures on Wavelets (1992) · Zbl 0776.42018 · doi:10.1137/1.9781611970104
[14] DOI: 10.1007/3-540-51968-8_86 · doi:10.1007/3-540-51968-8_86
[15] DOI: 10.1016/0045-7930(89)90006-6 · Zbl 0664.76142 · doi:10.1016/0045-7930(89)90006-6
[16] DOI: 10.1080/00102208408923749 · doi:10.1080/00102208408923749
[17] DOI: 10.2307/2374796 · Zbl 0764.41024 · doi:10.2307/2374796
[18] DOI: 10.1006/acha.1993.1008 · Zbl 0796.62083 · doi:10.1006/acha.1993.1008
[19] Farge M, Wavelets and Physics (1998)
[20] Fröhlich J, Eur. J. Mech. 13 pp 439– (1994)
[21] DOI: 10.1006/acha.1996.0033 · Zbl 0865.76061 · doi:10.1006/acha.1996.0033
[22] DOI: 10.1006/jcph.1996.5573 · Zbl 0868.65067 · doi:10.1006/jcph.1996.5573
[23] DOI: 10.1137/1036095 · Zbl 0803.42016 · doi:10.1137/1036095
[24] DOI: 10.1016/S0045-7825(94)80036-7 · Zbl 0826.65083 · doi:10.1016/S0045-7825(94)80036-7
[25] Kagan L, Phys. Rev. 53 pp 6021– (1996)
[26] DOI: 10.1016/S0010-2180(96)00108-3 · doi:10.1016/S0010-2180(96)00108-3
[27] Liandrat J, Technical report ICASE (1990)
[28] DOI: 10.1016/0010-2180(94)90023-X · doi:10.1016/0010-2180(94)90023-X
[29] Maday Y, C. R. Acad. Sci., Paris I 312 pp 405– (1991)
[30] Meyer Y, Ondelettes et Opérateurs I/II (1990)
[31] Perrier V, Rech. Aérosp. 3 pp 53– (1989)
[32] DOI: 10.1016/0010-2180(90)90074-2 · doi:10.1016/0010-2180(90)90074-2
[33] Ronney P, Space Forum (1998)
[34] DOI: 10.1137/0149062 · Zbl 0672.76065 · doi:10.1137/0149062
[35] DOI: 10.1016/0021-9045(69)90040-9 · Zbl 0202.34803 · doi:10.1016/0021-9045(69)90040-9
[36] Williams F A, Combustion Theory (1985)
[37] DOI: 10.1006/jcph.1995.1194 · Zbl 0839.65118 · doi:10.1006/jcph.1995.1194
[38] Wu M, Technical report (1998)
[39] Zeldovich Ya B, Theory of Combustion and Detonation of Gases (1944)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.