×

zbMATH — the first resource for mathematics

Finite \(N\) AdS/CFT correspondence for abelian and non-abelian orbifolds, and gauge coupling unification. (English) Zbl 1036.81028
Summary: Although the AdS/CFT correspondence is rigorous only for an infinite \(N\to\infty\) stack of D3-branes, it can be fruitfully studied for finite \(N\) as a source of gauge structures and choices for chiral fermions and complex scalars which solve the hierarchy problem by a conformal fixed point. We emphasize orbifolds \(\text{AdS}_5\times S^5/ \Gamma\) where the resulting GFT has \({\mathcal N}=0\) supersymmetry. The fact that the complex scalars are prescribed by the construction limits the possible spontaneous symmetry breaking. Both Abelian and non-Abelian \(\Gamma\) are illustrated by simple examples. An accurate \(\sin^2\theta\) in electroweak unification can be obtained, suggesting that this approach merits further study.
MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83E30 String and superstring theories in gravitational theory
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] DOI: 10.1016/0550-3213(85)90602-9 · doi:10.1016/0550-3213(85)90602-9
[2] DOI: 10.1016/0370-2693(81)90743-7 · doi:10.1016/0370-2693(81)90743-7
[3] DOI: 10.1016/0370-2693(81)90744-9 · doi:10.1016/0370-2693(81)90744-9
[4] DOI: 10.1016/0550-3213(84)90052-X · Zbl 0661.17013 · doi:10.1016/0550-3213(84)90052-X
[5] DOI: 10.1103/PhysRevLett.52.1575 · doi:10.1103/PhysRevLett.52.1575
[6] DOI: 10.1016/S0550-3213(86)80006-2 · doi:10.1016/S0550-3213(86)80006-2
[7] Aharony O., Phys. Rep. 323 pp 183– (2000) · Zbl 1368.81009 · doi:10.1016/S0370-1573(99)00083-6
[8] DOI: 10.1016/0550-3213(83)90179-7 · doi:10.1016/0550-3213(83)90179-7
[9] Kachru S., Phys. Rev. Lett. 80 pp 4855– (1998) · Zbl 0947.81096 · doi:10.1103/PhysRevLett.80.4855
[10] DOI: 10.4310/ATMP.1998.v2.n2.a1 · Zbl 0914.53047 · doi:10.4310/ATMP.1998.v2.n2.a1
[11] Frampton P. H., Phys. Rev. D 60 pp 41901– (1999) · doi:10.1103/PhysRevD.60.041901
[12] Frampton P. H., Phys. Lett. B 454 pp 49– (1999) · Zbl 1058.81651 · doi:10.1016/S0370-2693(99)00359-7
[13] P. H. Frampton and C. Vafa, hep-th/9903226.
[14] Frampton P. H., Phys. Rev. D 60 pp 87004– (1999)
[15] Frampton P. H., Phys. Rev. D 60 pp 107505– (1999) · doi:10.1103/PhysRevD.60.107505
[16] Hooft G. ’t, Phys. Lett. B 198 pp 61– (1987) · doi:10.1016/0370-2693(87)90159-6
[17] Amati D., Phys. Lett. B 289 pp 87– (1992) · doi:10.1016/0370-2693(92)91366-H
[18] DOI: 10.1016/0370-2693(91)91641-8 · doi:10.1016/0370-2693(91)91641-8
[19] Amaldi U., Phys. Lett. B 281 pp 374– (1992) · doi:10.1016/0370-2693(92)91158-6
[20] Hooft G. ’t, Nucl. Phys. B 72 pp 461– (1972) · doi:10.1016/0550-3213(74)90154-0
[21] Pakvasa S., Phys. Lett. B 73 pp 61– (1978) · doi:10.1016/0370-2693(78)90172-7
[22] Frampton P. H., Phys. Lett. B 485 pp 403– (2000) · doi:10.1016/S0370-2693(00)00700-0
[23] For one review, see M. Dine, Possible Scales of New Physics. Plenary talk on Beyond the Standard Model, DPF meeting at UCLA. January 1999, hep-th/9905219.
[24] Particle Data Group, Eur. Phys. J. C 15 pp 1– (2000)
[25] DOI: 10.1007/BF01573998 · doi:10.1007/BF01573998
[26] DOI: 10.1016/0550-3213(81)90522-8 · doi:10.1016/0550-3213(81)90522-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.