×

Acid polishing of lead glass. (English) Zbl 1274.80017

The authors introduce and discuss a model which accounts for the acid polishing process of lead glass. They consider a molecularly rough surface composed of horizontal layers and submitted to a wet chemical etching process. They introduce the fraction \(\psi _{n}^{j}(t)\) of exposed surface at level \(n\) of species \(j\) and at time \(t\). They prove that the fractions \(\psi _{n}^{j}(t)\) are solutions of the coupled system of ordinary differential equations \( \overset{.}{\psi }_{0}^{j}(t)=-A_{j}\psi _{0}^{j}(t)\), \(\overset{.}{\psi } _{n}^{j}(t)=-A_{j}\psi _{n}^{j}(t)+f_{j}\sum_{k}A_{k}\psi _{n-1}^{k}(t)\), \( n\geq 1\). The initial conditions \(\psi _{0}^{j}(0)=f_{j}\), \(\psi _{n}^{j}(0)=0\), \(n\geq 1\), are added. Here \(f_{j}\) is the fraction of \(j\) molecules. For the resolution of this coupled linear system, the authors use the Laplace transform which leads to an algebraic system whose solution can be expressed in terms of the function \(g(\lambda )=\sum_{k}\frac{ A_{k}f_{k}}{\lambda +A_{k}}\). They then describe some properties of the solution. The paper ends with some considerations on a continuum model, the authors introducing the eigenvectors of the preceding algebraic system and ending with a nonsteady partial differential system.

MSC:

80A32 Chemically reacting flows
34A30 Linear ordinary differential equations and systems
34E10 Perturbations, asymptotics of solutions to ordinary differential equations
35K40 Second-order parabolic systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Spierings GACM: Wet chemical etching of silicate glasses in hydrofluoric acid based solutions.Journal of Materials Science 1993, 28:6261-6273. · doi:10.1007/BF01352182
[2] Judge JS: A study of the dissolution of SiO2in acidic fluoride solutions.Journal of the Electrochemical Society 1971, 118:1772-1775. · doi:10.1149/1.2407835
[3] Spierings GACM, Van Dijk J: The dissolution of Na2O-Mg)-CaO-SiO2glass in aqueous HF solutions.Journal of Materials Science 1987, 22:1869-1874. · doi:10.1007/BF01132419
[4] Harrison JD, Fluri K, Seiler K, Fan Z, Effenhauser CS, Manz A: Micromachining a miniturized capillary electrophoresis-based chemical analysis system on a chip.Science 1993, 261:895-897. · doi:10.1126/science.261.5123.895
[5] Stevens GWW: Microphotography. London: Chapman and Hall; 1968.
[6] Macleod Ross W: Modern circuit technology. London: Portcullis Press; 1975.
[7] Coombs JD: Printed circuit handbook. New York: McGraw-Hill; 1979.
[8] Fowler AC, Ward J, O’Brien SBG: A simple model for multi-component etching.Journal of Colloid and Interface Science 2011, 354:421-423. · doi:10.1016/j.jcis.2010.10.056
[9] Tenney AS, Ghezzo M: Etch rates of doped oxides in solutions of buffered HF.Journal of the Electrochemical Society 1973, 120:1091-1095. · doi:10.1149/1.2403636
[10] Spierings GACM: Compositional effects in the dissolution of multicomponent silicate glasses in aqueous HF solutions.Journal of Materials Science 1991, 26:3329-3336. · doi:10.1007/BF01124681
[11] Tavassoly M, Dashtdar M: Height distribution on a rough plane and specularly diffracted light amplitude are Fourier transform pair.Optics Communications 2008, 281:2397-2405. · doi:10.1016/j.optcom.2007.12.085
[12] Barabási AL, Stanley H: Fractal concepts in surface growth. Cambridge: Cambridge University Press; 1995. · Zbl 0838.58023 · doi:10.1017/CBO9780511599798
[13] Slikkerveer PJ, ten Thije Boonkamp JHM: Mathematical modelling of erosion by powder blasting.Survey on Mathematics in Industry 2002, 10:89-105. · Zbl 1001.35023
[14] Tersoff J, Tu Y, Grinstein G: Effect of curvature and stress on reaction rates at solid interfaces.Applied Physics Letters 1998,73(16):2328-2330. · doi:10.1063/1.121812
[15] Kim KS, Hurtado JA, Tan H: Evolution of a surface-roughness spectrum caused by stress in nanometer-scale chemical etching.Physical Review Letters 1999, 83:3872-3875. · doi:10.1103/PhysRevLett.83.3872
[16] Yu HH, Suo Z: Stress-dependent surface reactions and implications for a stress measurement technique.Journal of Applied Physics 2000, 87:1211-1218. · doi:10.1063/1.371999
[17] Kuiken HK: Etching: a two-dimensional mathematical approach.Proceedings fo the Royal Society of London Series A 1984, 392:199-225. · doi:10.1098/rspa.1984.0029
[18] Kuiken HK: Etching through a slit.Proceedings of the Royal Society Part A 1984, 396:95-117. · doi:10.1098/rspa.1984.0110
[19] Notten PH, Kelly LH, Kuiken HK: Etching profiles at resist edges.Journal of the Electrochemical Society 1986,133(6):1226-1232. · doi:10.1149/1.2108823
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.