zbMATH — the first resource for mathematics

Osmotic and electroosmotic fluid transport across the retinal pigment epithelium: a mathematical model. (English) Zbl 1406.92133
Summary: The retinal pigment epithelium (RPE) is the outermost cell layer of the retina. It has several important physiological functions, among which is removal of excess fluid from the sub-retinal space by pumping it isotonically towards the choroid. Failure of this pumping leads to fluid accumulation, which is closely associated with several pathological conditions, such as age-related macular degeneration, macular oedema and retinal detachment. In the present work we study mechanisms responsible for fluid transport across the RPE with the aim of understanding how fluid accumulation can be prevented. We focus on two possible mechanisms, osmosis and electroosmosis, and develop a spatially resolved mathematical model that couples fluid and ion transport across the epithelium, accounting for the presence of Na\(^+\), K\(^+\) and Cl\(^-\) ions. Our model predicts spatial variability of ion concentrations and the electrical potential along the cleft gap between two adjacent cells, which osmotically drives the flow across the lateral membranes. This flow is directed from the sub-retinal space to the choroid and has a magnitude close to measured values. Electroosmosis is subdominant by three orders of magnitude to osmosis and has an opposite direction, suggesting that local osmosis is the main driving mechanism for water transport across the RPE.
92C35 Physiological flow
92C05 Biophysics
35Q92 PDEs in connection with biology, chemistry and other natural sciences
76W05 Magnetohydrodynamics and electrohydrodynamics
Full Text: DOI
[1] Adijanto, J.; Banzon, T.; Jalickee, S.; Wang, N. S.; Miller, S. S., Co2-induced ion and fluid transport in human retinal pigment epithelium, J. Gen. Physiol., 133, 6, 603-622, (2009)
[2] Anderson, J. M.; Van Itallie, C. M., Physiology and function of the tight junction, CSH. Perspect. Biol., 1, 2, a002584, (2009)
[3] Bialek, S.; Miller, S. S., K+ and cl-transport mechanisms in bovine pigment epithelium that could modulate subretinal space volume and composition., J. Physiol. (Lond), 475, 3, 401-417, (1994)
[4] Dornonville de la Cour, M., Ion transport in the retinal pigment epithelium. a study with double barrelled ion-selective microelectrodes., Acta. Ophthalmol. Suppl., 209, 1, (1993)
[5] Diamond, J. M.; Bossert, W. H., Standing-gradient osmotic flow, J. Gen. Physiol., 50, 8, 2061-2083, (1967)
[6] Fischbarg, J., On the mechanism of fluid transport across corneal endothelium and epithelia in general, J. Exp. Zool. Part A, 300, 1, 30-40, (2003)
[7] Fischbarg, J., Fluid transport across leaky epithelia: central role of the tight junction and supporting role of aquaporins, Physiol. Rev., 90, 4, 1271-1290, (2010)
[8] Fischbarg, J.; Diecke, F., A mathematical model of electrolyte and fluid transport across corneal endothelium, J. Membr. Biol., 203, 1, 41-56, (2005)
[9] Fischbarg, J.; Diecke, F.; Iserovich, P.; Rubashkin, A., The role of the tight junction in paracellular fluid transport across corneal endothelium. electro-osmosis as a driving force, J. Membr. Biol., 210, 2, 117-130, (2006)
[10] Frambach, D.; Valentine, J.; Weiter, J., Furosemide-sensitive cl transport in bovine retinal pigment epithelium., Invest. Ophthalmol. Vis. Sci., 30, 10, 2271-2274, (1989)
[11] Fujii, S.; Gallemore, R.; Hughes, B. A.; Steinberg, R., Direct evidence for a basolateral membrane cl-conductance in toad retinal pigment epithelium, Am. J. Phys. Cell Physiol., 262, 2, C374-C383, (1992)
[12] Gallemore, R.; Hughes, B.; Miller, S., Transport mechanisms in the retinal pigment epithelium, (Marmor, M.; Wolfensberger, T., The Retinal Pigment Epithelium, (1998), Oxford University Press New York), 103-134
[13] Gallemore, R. P.; Steinberg, R. H., Effects of dids on the chick retinal pigment epithelium. i. membrane potentials, apparent resistances, and mechanisms, J. Neurosci., 9, 6, 1968-1976, (1989)
[14] Gavish, N.; Promislow, K., Dependence of the dielectric constant of electrolyte solutions on ionic concentration: a microfield approach, Phys. Rev. E, 94, 1, 012611, (2016)
[15] Hamann, S., Molecular mechanisms of water transport in the eye, Int. Rev. Cytol., 215, 395-431, (2002)
[16] Hill, A., Solute-solvent coupling in epithelia: a critical examination of the standing-gradient osmotic flow theory, Proc. R. Soc. Lond.-B Biol. Sci., 190, 1098, 99-114, (1975)
[17] Hill, A., Fluid transport: a guide for the perplexed, J. Membr. Biol., 223, 1, 1-11, (2008)
[18] Hill, A.; Shachar-Hill, B.; Shachar-Hill, Y., What are aquaporins for?, J. Membr. Biol., 197, 1, 1-32, (2004)
[19] Hughes, B. A.; Miller, S. S.; Machen, T. E., Effects of cyclic amp on fluid absorption and ion transport across frog retinal pigment epithelium. measurements in the open-circuit state., J. Gen. Physiol., 83, 6, 875-899, (1984)
[20] Juuti-Uusitalo, K.; Delporte, C.; Grégoire, F.; Perret, J.; Huhtala, H.; Savolainen, V.; Nymark, S.; Hyttinen, J.; Uusitalo, H.; Willermain, F., Aquaporin expression and function in human pluripotent stem cell-derived retinal pigmented epithelial cells, Invest. Ophthalmol. Vis. Sci., 54, 5, 3510-3519, (2013)
[21] Keener, J. P.; Sneyd, J., Mathematical physiology, Vol. 1, (2009), Springer · Zbl 1273.92017
[22] Kolb, H. Simple Anatomy of the Retina. Webvision, 2012. http://webvision.med.utah.edu/book/part-i-foundations/simple-anatomy-of-the-retina/. Accessed: 2018-09-08.
[23] Kusaka, S.; Inanobe, A.; Fujita, A.; Makino, Y.; Tanemoto, M.; Matsushita, K.; Tano, Y.; Kurachi, Y., Functional kir7. 1 channels localized at the root of apical processes in rat retinal pigment epithelium, J. Physiol. (Lond), 531, 1, 27-36, (2001)
[24] La Cour, M., Cl- transport in frog retinal pigment epithelium, Exp. Eye. Res., 54, 6, 921-931, (1992)
[25] La Cour, M., The retinal pigment epithelium, Adler’s Physiology of the Eye: Clinical Applications, 10, 348-357, (2003)
[26] Lew, V.; Ferreira, H.; Moura, T., The behaviour of transporting epithelial cells. i. computer analysis of a basic model, Proc. R. Soc. Lond.-B Biol. Sci., 206, 1162, 53-83, (1979)
[27] Li, H.; Sheppard, D. N.; Hug, M. J., Transepithelial electrical measurements with the ussing chamber, J. Cystic Fibrosis, 3, 123-126, (2004)
[28] Marmor, M., Control of subretinal fluid: experimental and clinical studies, Eye, 4, 2, 340-344, (1990)
[29] Marmor, M., Structure, function, and disease of the retinal pigment epithelium, Retinal Pigment Epithelium, 3-12, (1998)
[30] Mathias, R.; Wang, H., Local osmosis and isotonic transport, J. Membr. Biol., 208, 1, 39-53, (2005)
[31] Mathias, R. T., Epithelial water transport in a balanced gradient system, Biophys. J., 47, 6, 823-836, (1985)
[32] Matthews, G. G., Cellular physiology of nerve and muscle, (2009), John Wiley & Sons
[33] McBain, J. W.; Dawson, C. R., The diffusion of potassium chloride in aqueous solution, Proc. R. Soc. Lond. A, 148, 863, 32-39, (1935)
[34] McLaughlin, S.; Mathias, R. T., Electro-osmosis and the reabsorption of fluid in renal proximal tubules, J. Gen. Physiol., 85, 5, 699-728, (1985)
[35] Miller, S. S.; Edelman, J. L., Active ion transport pathways in the bovine retinal pigment epithelium., J. Physiol. (Lond), 424, 283, (1990)
[36] Miller, S. S.; Steinberg, R. H.; Oakley II, B., The electrogenic sodium pump of the frog retinal pigment epithelium, J. Membr. Biol., 44, 3-4, 259-279, (1978)
[37] Mori, Y.; Jerome, J.; Peskin, C., A three-dimensional model of cellular electrical activity, Bull. Inst. Math. Acad. Sinica, 2, 367-390, (2007) · Zbl 1129.92038
[38] Mori, Y.; Peskin, C., A numerical method for cellular electrophysiology based on the electrodiffusion equations with internal boundary conditions at membranes, Comm. App. Math. and Comp. Sci., 4, 85-134, (2009) · Zbl 1182.92024
[39] Peng, S.; Adelman, R. A.; Rizzolo, L. J., Minimal effects of vegf and anti-vegf drugs on the permeability or selectivity of rpe tight junctions, Invest. Ophthalmol. Vis. Sci., 51, 6, 3216-3225, (2010)
[40] Probstein, R. F., Physicochemical hydrodynamics: an introduction, (2005), John Wiley & Sons
[41] Quinn, R.; Miller, S., Ion transport mechanisms in native human retinal pigment epithelium., Invest. Ophthalmol. Vis. Sci., 33, 13, 3513-3527, (1992)
[42] Reichhart, N.; Strauß, O., Ion channels and transporters of the retinal pigment epithelium, Exp. Eye. Res., 126, 27-37, (2014)
[43] Rizzolo, L. J.; Peng, S.; Luo, Y.; Xiao, W., Integration of tight junctions and claudins with the barrier functions of the retinal pigment epithelium, Prog. Retin. Eye Res., 30, 5, 296-323, (2011)
[44] Rubashkin, A.; Iserovich, P.; Hernandez, J.; Fischbarg, J., Epithelial fluid transport: protruding macromolecules and space charges can bring about electro-osmotic coupling at the tight junctions, J. Membr. Biol., 208, 3, 251-263, (2006)
[45] Sanchez, J.; Cacace, V.; Kusnier, C.; Nelson, R.; Rubashkin, A.; Iserovich, P.; Fischbarg, J., Net fluorescein flux across corneal endothelium strongly suggests fluid transport is due to electro-osmosis, J. Membr. Biol., 249, 4, 469-473, (2016)
[46] Sanchez, J.; Li, Y.; Rubashkin, A.; Iserovich, P.; Wen, Q.; Ruberti, J.; Smith, R.; Rittenband, D.; Kuang, K.; Diecke, F., Evidence for a central role for electro-osmosis in fluid transport by corneal endothelium, J. Membr. Biol., 187, 1, 37-50, (2002)
[47] Schultz, S. G., The role of paracellular pathways in isotonic fluid transport, Yale J. Biol. Med., 50, 2, 99, (1977)
[48] Shachar-Hill, B.; Hill, A. E., Paracellular fluid transport by epithelia, Int. Rev. Cytol., 215, 319-350, (2002)
[49] Sharma, R. K.; Ehinger, B., Development and structure of the retina, Adler’s Physiology of the Eye: Clinical Applications, 10, 319-347, (2003)
[50] Shi, G.; Maminishkis, A.; Banzon, T.; Jalickee, S.; Li, R.; Hammer, J.; Miller, S. S., Control of chemokine gradients by the retinal pigment epithelium, Invest. Ophthalmol. Vis. Sci., 49, 10, 4620-4630, (2008)
[51] Spring, K. R., Mechanism of fluid transport by epithelia, Compr. Physiol., (2010)
[52] Squires, T. M.; Bazant, M. Z., Induced-charge electro-osmosis, J. Fluid. Mech., 509, 217-252, (2004) · Zbl 1093.76065
[53] Stamer, W. D.; Bok, D.; Hu, J.; Jaffe, G. J.; McKay, B. S., Aquaporin-1 channels in human retinal pigment epithelium: role in transepithelial water movement, Invest. Ophthalmol. Vis. Sci., 44, 6, 2803-2808, (2003)
[54] Strauss, O. The retinal pigment epithelium. Webvision, 2011. https://webvision.med.utah.edu/book/part-ii-anatomy-and-physiology-of-the-retina/the-retinal-pigment-epithelium/. Accessed: 2018-09-08.
[55] Strieter, J.; Stephenson, J. L.; Palmer, L. G.; Weinstein, A. M., Volume-activated chloride permeability can mediate cell volume regulation in a mathematical model of a tight epithelium., J. Gen. Physiol., 96, 2, 319-344, (1990)
[56] Weinstein, A. M.; Sontag, E. D., Modeling proximal tubule cell homeostasis: tracking changes in luminal flow, Bull. Math. Biol., 71, 6, 1285-1322, (2009) · Zbl 1171.92018
[57] Weinstein, A. M.; Stephenson, J. L., Electrolyte transport across a simple epithelium. steady-state and transient analysis, Biophys. J., 27, 2, 165-186, (1979)
[58] Weiss, T., Cellular biophysics I. transport., (1996), MIT Press Cambridge, Massachusetts
[59] Weiss, T., Cellular biophysics II. electrical properties., (1996), MIT Press Cambridge, Massachusetts
[60] Wimmers, S.; Karl, M. O.; Strauss, O., Ion channels in the rpe, Prog. Retin. Eye Res., 26, 3, 263-301, (2007)
[61] Yariv, E., An asymptotic derivation of the thin-Debye-layer limit for electrokinetic phenomena, Chem. Eng. Commun., 197, 1, 3-17, (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.