×

Isogeometric shape optimization of smoothed petal auxetic structures via computational periodic homogenization. (English) Zbl 1439.74318

Summary: An important feature that drives the auxetic behaviour of the star-shaped auxetic structures is the hinge-functional connection at the vertex connections. This feature poses a great challenge for manufacturing and may lead to significant stress concentrations. To overcome these problems, we introduced smoothed petal-shaped auxetic structures, where the hinges are replaced by smoothed connections. To accommodate the curved features of the petal-shaped auxetics, a parametrisation modelling scheme using multiple NURBS patches is proposed. Next, an integrated shape design frame work using isogeometric analysis is adopted to improve the structural performance. To ensure a minimum thickness for each member, a geometry sizing constraint is imposed via piece-wise bounding polynomials. This geometry sizing constraint, in the context of isogeometric shape optimization, is particularly interesting due to the non-interpolatory nature of NURBS basis. The effective Poisson ratio is used directly as the objective function, and an adjoint sensitivity analysis is carried out. The optimized designs – smoothed petal auxetic structures – are shown to achieve low negative Poisson’s ratios, while the difficulties of manufacturing the hinges are avoided. For the case with six petals, an in-plane isotropy is achieved.

MSC:

74P20 Geometrical methods for optimization problems in solid mechanics
65D07 Numerical computation using splines
74Q05 Homogenization in equilibrium problems of solid mechanics
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Greaves, G. N.; Greer, A.; Lakes, R.; Rouxel, T., Poisson’s ratio and modern materials, Nature Mater., 10, 11, 823-837 (2011)
[2] Yang, W.; Li, Z.-M.; Shi, W.; Xie, B.-H.; Yang, M.-B., Review on auxetic materials, J. Mater. Sci., 39, 10, 3269-3279 (2004)
[3] Choi, J.; Lakes, R., Design of a fastener based on negative Poisson’s ratio foam, Cell. Polym., 10, 3, 205-212 (1991)
[4] Lim, T.-C., Auxetic Materials and Structures (2014), Springer
[5] Elipe, J. C.Á.; Lantada, A. D., Comparative study of auxetic geometries by means of computer-aided design and engineering, Smart Mater. Struct., 21, 10, 105004-105015 (2012)
[6] Saxena, K. K.; Das, R.; Calius, E. P., Three decades of auxetics researchmaterials with negative poisson’s ratio: a review, Adv. Energy Mater., 18, 11, 1847-1870 (2016)
[7] Kolken, H. M.; Zadpoor, A., Auxetic mechanical metamaterials, RSC Adv., 7, 9, 5111-5129 (2017)
[8] Almgren, R. F., An isotropic three-dimensional structure with poisson’s ratio- \(- 1\), J. Elasticity, 15, 4, 427-430 (1985)
[9] Milton, G. W., Composite materials with poisson’s ratios close to -1, J. Mech. Phys. Solids, 40, 5, 1105-1137 (1992) · Zbl 0780.73047
[10] Lakes, R., Foam structures with a negative poisson’s Ratio, Science, 235, 4792, 1038-1040 (1987)
[11] Friis, E.; Lakes, R.; Park, J., Negative poisson’s ratio polymeric and metallic foams, J. Mater. Sci., 23, 12, 4406-4414 (1988)
[12] Evans, K., Tailoring the negative poisson’s ratio, Chem. Ind., 654-657 (1990)
[13] Phan-Thien, N.; Karihaloo, B., Materials with negative poissons ratio: a qualitative microstructural model, J. Appl. Mech., 61, 4, 1001-1004 (1994)
[14] Babaee, S.; Shim, J.; Weaver, J. C.; Chen, E. R.; Patel, N.; Bertoldi, K., 3D soft metamaterials with negative Poisson’s ratio, Adv. Mater., 25, 36, 5044-5049 (2013)
[15] Sigmund, O., Materials with prescribed constitutive parameters: an inverse homogenization problem, Int. J. Solids Struct., 31, 17, 2313-2329 (1994) · Zbl 0946.74557
[16] Sigmund, O., Tailoring materials with prescribed elastic properties, Mech. Mater., 20, 4, 351-368 (1995)
[17] Larsen, U. D.; Signund, O.; Bouwsta, S., Design and fabrication of compliant micromechanisms and structures with negative poisson’s ratio, J. Microelectromech. Syst., 6, 2, 99-106 (1997)
[18] Radman, A.; Huang, X.; Xie, Y., Topological optimization for the design of microstructures of isotropic cellular materials, Eng. Optim., 45, 11, 1331-1348 (2013)
[19] Querin, O.; Steven, G.; Xie, Y., Evolutionary structural optimisation (eso) using a bidirectional algorithm, Eng. Comput., 15, 8, 1031-1048 (1998) · Zbl 0938.74056
[20] Huang, X.; Xie, Y., Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method, Finite Elem. Anal. Des., 43, 14, 1039-1049 (2007)
[21] Huang, X.; Xie, M., Evolutionary Topology Optimization of Continuum Structures: Methods and Applications (2010), Wiley · Zbl 1279.90001
[22] Wang, Y.; Gao, J.; Luo, Z.; Brown, T.; Zhang, N., Level-set topology optimization for multimaterial and multifunctional mechanical metamaterials, Eng. Optim., 1-21 (2016)
[23] Wang, Y.; Luo, Z.; Zhang, N.; Kang, Z., Topological shape optimization of microstructural metamaterials using a level set method, Comput. Mater. Sci., 87, 178-186 (2014)
[24] Sethian, J. A.; Wiegmann, A., Structural boundary design via level set and immersed interface methods, J. Comput. Phys., 163, 2, 489-528 (2000) · Zbl 0994.74082
[25] Wang, M. Y.; Wang, X.; Guo, D., A level set method for structural topology optimization, Comput. Methods Appl. Mech. Engrg., 192, 1, 227-246 (2003) · Zbl 1083.74573
[26] Allaire, G.; Jouve, F.; Toader, A.-M., Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys., 194, 1, 363-393 (2004) · Zbl 1136.74368
[27] Schwerdtfeger, J.; Wein, F.; Leugering, G.; Singer, R.; Körner, C.; Stingl, M.; Schury, F., Design of auxetic structures via mathematical optimization, Adv. Mater., 23, 22-23, 2650-2654 (2011)
[28] Kureta, R.; Kanno, Y., A mixed integer programming approach to designing periodic frame structures with negative poisson’s ratio, Optim. Eng., 15, 3, 773-800 (2014) · Zbl 1364.90228
[29] Kaminakis, N. T.; Stavroulakis, G. E., Topology optimization for compliant mechanisms, using evolutionary-hybrid algorithms and application to the design of auxetic materials, Composites B, 43, 6, 2655-2668 (2012)
[30] Javadi, A. A.; Faramarzi, A.; Farmani, R., Design and optimization of microstructure of auxetic materials, Eng. Comput., 29, 3, 260-276 (2012)
[31] Horrigan, E.; Smith, C. W.; Scarpa, F.; Gaspar, N.; Javadi, A. A.; Berger, M.; Evans, K. E., Simulated optimisation of disordered structures with negative poissons ratios, Mech. Mater., 41, 8, 919-927 (2009)
[32] Czarnecki, S.; Wawruch, P., The emergence of auxetic material as a result of optimal isotropic design, Phys. Status Solidi b, 252, 7, 1620-1630 (2015)
[33] Wang, F.; Sigmund, O.; Jensen, J. S., Design of materials with prescribed nonlinear properties, J. Mech. Phys. Solids, 69, 156-174 (2014)
[34] Clausen, A.; Wang, F.; Jensen, J. S.; Sigmund, O.; Lewis, J. A., Topology optimized architectures with programmable Poisson’s ratio over large deformations, Adv. Mater., 27, 37, 5523-5527 (2015)
[35] Nakshatrala, P.; Tortorelli, D.; Nakshatrala, K., Nonlinear structural design using multiscale topology optimization. Part I: Static formulation, Comput. Methods Appl. Mech. Engrg., 261, 167-176 (2013) · Zbl 1286.74077
[36] Xia, L.; Breitkopf, P., Concurrent topology optimization design of material and structure within nonlinear multiscale analysis framework, Comput. Methods Appl. Mech. Engrg., 278, 524-542 (2014) · Zbl 1423.74770
[37] Xia, L.; Breitkopf, P., A reduced multiscale model for nonlinear structural topology optimization, Comput. Methods Appl. Mech. Engrg., 280, 117-134 (2014) · Zbl 1423.74771
[38] Nakshatrala, P.; Tortorelli, D., Nonlinear structural design using multiscale topology optimization. Part II: Transient formulation, Comput. Methods Appl. Mech. Engrg., 304, 605-618 (2016) · Zbl 1425.74377
[39] Nanthakumar, S.; Lahmer, T.; Zhuang, X.; Park, H. S.; Rabczuk, T., Topology optimization of piezoelectric nanostructures, J. Mech. Phys. Solids, 94, 316-335 (2016)
[40] Theocaris, P.; Stavroulakis, G.; Panagiotopoulos, P., Negative poisson’s ratios in composites with star-shaped inclusions: a numerical homogenization approach, Arch. Appl. Mech., 67, 4, 274-286 (1997) · Zbl 0894.73087
[41] Grima, J. N.; Gatt, R.; Alderson, A.; Evans, K., On the potential of connected stars as auxetic systems, Mol. Simul., 31, 13, 925-935 (2005)
[42] Carneiro, V.; Puga, H.; Meireles, J., Analysis of the geometrical dependence of auxetic behavior in reentrant structures by finite elements, Acta Mech. Sinica, 32, 2, 295-300 (2016) · Zbl 1348.74307
[43] Hughes, T. J. R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39, 4135-4195 (2005) · Zbl 1151.74419
[44] Cho, S.; Ha, S.-H., Isogeometric shape design optimization: exact geometry and enhanced sensitivity, Struct. Multidiscip. Optim., 38, 1, 53-70 (2009) · Zbl 1274.74221
[45] Qian, X., Full analytical sensitivities in NURBS based isogeometric shape optimization, Comput. Methods Appl. Mech. Engrg., 199, 29, 2059-2071 (2010) · Zbl 1231.74352
[46] Nagy, A. P.; Abdalla, M. M.; Gürdal, Z., Isogeometric sizing and shape optimisation of beam structures, Comput. Methods Appl. Mech. Engrg., 199, 17, 1216-1230 (2010) · Zbl 1227.74047
[47] Nagy, A. P.; Abdalla, M. M.; Gürdal, Z., Isogeometric design of elastic arches for maximum fundamental frequency, Struct. Multidiscip. Optim., 43, 1, 135-149 (2011) · Zbl 1274.74287
[48] Manh, N. D.; Evgrafov, A.; Gersborg, A. R.; Gravesen, J., Isogeometric shape optimization of vibrating membranes, Comput. Methods Appl. Mech. Engrg., 200, 13, 1343-1353 (2011) · Zbl 1228.74062
[49] Nørtoft, P.; Gravesen, J., Isogeometric shape optimization in fluid mechanics, Struct. Multidiscip. Optim., 48, 5, 909-925 (2013)
[50] Nagy, A. P.; IJsselmuiden, S. T.; Abdalla, M. M., Isogeometric design of anisotropic shells: optimal form and material distribution, Comput. Methods Appl. Mech. Engrg., 264, 145-162 (2013) · Zbl 1286.74074
[51] Kiendl, J.; Schmidt, R.; Wüchner, R.; Bletzinger, K.-U., Isogeometric shape optimization of shells using semi-analytical sensitivity analysis and sensitivity weighting, Comput. Methods Appl. Mech. Engrg., 274, 0, 148-167 (2014) · Zbl 1296.74082
[52] Qian, X.; Sigmund, O., Isogeometric shape optimization of photonic crystals via coons patches, Comput. Methods Appl. Mech. Engrg., 200, 25, 2237-2255 (2011) · Zbl 1230.74149
[53] Park, B.-U.; Seo, Y.-D.; Sigmund, O.; Youn, S.-K., Shape optimization of the stokes flow problem based on isogeometric analysis, Struct. Multidiscip. Optim., 48, 5, 965-977 (2013)
[54] Braibant, V.; Fleury, C., Shape optimal design using b-splines, Comput. Methods Appl. Mech. Engrg., 44, 3, 247-267 (1984) · Zbl 0525.73104
[55] Zhang, W. H.; Wang, D.; Yang, J.-G., A parametric mapping method for curve shape optimization on 3d panel structures, Internat. J. Numer. Methods Engrg., 84, 4, 485-504 (2010) · Zbl 1202.74131
[56] Wang, D.; Zhang, W.-H., A bispace parameterization method for shape optimization of thin-walled curved shell structures with openings, Internat. J. Numer. Methods Engrg., 90, 13, 1598-1617 (2012) · Zbl 1246.74041
[57] Cai, S.-Y.; Zhang, W. H.; Zhu, J. H.; Gao, T., Stress constrained shape and topology optimization with fixed mesh: a b-spline finite cell method combined with level set function, Comput. Methods Appl. Mech. Engrg., 278, 361-387 (2014) · Zbl 1423.74741
[58] Dirrenberger, J.; Forest, S.; Jeulin, D.; Colin, C., Homogenization of periodic auxetic materials, Procedia Eng., 10, 1847-1852 (2011)
[59] Dirrenberger, J.; Forest, S.; Jeulin, D., Effective elastic properties of auxetic microstructures: anisotropy and structural applications, Int. J. Mech. Mater. Des., 9, 21-33 (2013)
[60] Bacigalupo, A.; De Bellis, M. L., Auxetic anti-tetrachiral materials: equivalent elastic properties and frequency band-gaps, Compos. Struct., 131, 530-544 (2015)
[61] Bacigalupo, A.; Lepidi, M.; Gnecco, G.; Gambarotta, L., Optimal design of auxetic hexachiral metamaterials with local resonators, Smart Mater. Struct., 25, 054009 (2016)
[62] Besson, J.; Cailletaud, G.; Chaboche, J.-L.; Forest, S.; Blétry, M., Non-linear mechanics of materials, (Solid Mechanics and Its Applications, vol. 167 (2009), Springer-Verlag: Springer-Verlag Berlin Heidelberg)
[63] Bacigalupo, A.; Gambarotta, L., Homogenization of periodic hexa- and tetrachiral cellular solids, Compos. Struct., 116, 461-476 (2014)
[64] Choi, K. K.; Kim, N.-H., Structural Sensitivity Analysis and Optimization 1: Linear Systems (2005), Springer-Verlag New York, Inc.: Springer-Verlag New York, Inc. New York, NY, USA
[65] Wang, Z.-P.; Turteltaub, S., Isogeometric shape optimization for quasi-static processes, Internat. J. Numer. Methods Engrg., 104, 5, 347-371 (2015) · Zbl 1352.74257
[66] Pressley, A., Elementary Differential Geometry (2010), Springer · Zbl 1191.53002
[67] Wang, Z.-P., Isogeometric Shape Optimization for Quasi-Static and Transient Problems (2015), Delft University of Technology: Delft University of Technology Delft, the Netherlands
[68] Wang, Z.-P.; Abdalla, M.; Turteltaub, S., Normalization approaches for the descent search direction in isogeometric shape optimization, Comput. Aided Des., 82, 68-78 (2017)
[69] Azegami, H.; Fukumoto, S.; Aoyama, T., Shape optimization of continua using NURBS as basis functions, Struct. Multidiscip. Optim., 47, 2, 247-258 (2013) · Zbl 1274.49055
[70] Inzarulfaisham, A. R.; Azegami, H., Solution to boundary shape optimization problem of linear elastic continua with prescribed natural vibration mode shapes, Struct. Multidiscip. Optim., 27, 3, 210-217 (2004)
[71] Riehl, S.; Friederich, J.; Scherer, M.; Meske, R.; Steinmann, P., On the discrete variant of the traction method in parameter-free shape optimization, Comput. Methods Appl. Mech. Engrg. (2014) · Zbl 1423.74758
[72] Le, C.; Bruns, T.; Tortorelli, D., A gradient-based, parameter-free approach to shape optimization, Comput. Methods Appl. Mech. Engrg., 200, 9, 985-996 (2011) · Zbl 1225.74065
[73] Svanberg, K., MMA and gcmma, versions september 2007, Optim. Syst. Theory, 104 (2007)
[74] Dirrenberger, J.; Forest, S.; Jeulin, D., Elastoplasticity of auxetic materials, Comput. Mater. Sci., 64, 57-61 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.