×

The initiation of a planar fluid plume beneath a rigid lid. (English) Zbl 1469.76039

Summary: The unsteady growth of a viscous fluid plume beneath a rigid upper lid is investigated. Two-dimensional (planar) flow is assumed, through a fissure in the horizontal lower boundary. Initially, the fluid exiting the bottom is assumed to form a semi-circular region, but rises as time progresses, and spreads across the upper boundary. The problem is modelled using Boussinesq theory, and solved using a time-dependent spectral method. These numerical solutions are also compared with the results of a simpler inviscid asymptotic solution. Results are indicated for different input fluid speeds and fissure widths.

MSC:

76D25 Wakes and jets
76M22 Spectral methods applied to problems in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Morton BR, Taylor GI, Turner JS (1956) Turbulent gravitational convection from maintained and instantaneous sources. Proc R Soc Lond A 234:1-23 · Zbl 0074.45402 · doi:10.1098/rspa.1956.0011
[2] Jia X, McLaughlin JB, Derksen J, Ahmadi G (2013) Simulation of a mannequin’s thermal plume in a small room. Comput Math Appl 65:287-295 · Zbl 1268.76047 · doi:10.1016/j.camwa.2011.06.056
[3] Baines WD, Turner JS (1969) Turbulent buoyant convection from a source in a confined region. J Fluid Mech 37:51-80 · doi:10.1017/S0022112069000413
[4] Taylor GI (1945) Dynamics of a mass of hot gas rising in air. Atomic Energy Commission MDDC 919. LADC 276. Los Alamos National Laboratory Research Library · Zbl 1171.76328
[5] Woods AW (2010) Turbulent plumes in nature. Annu Rev Fluid Mech 42:391-412 · doi:10.1146/annurev-fluid-121108-145430
[6] Hocking GC, Forbes LK (2009) Steady flow of a buoyant plume into a constant-density layer. J Eng Math 67:341-350 · Zbl 1310.76176 · doi:10.1007/s10665-009-9324-9
[7] Turner JS (1962) The ‘starting plume’ in neutral surroundings. J Fluid Mech 13:356-368 · Zbl 0106.40404 · doi:10.1017/S0022112062000762
[8] Tsang G (1970) Laboratory study of two-dimensional starting plumes. Atmos Environ 4:519-544 · doi:10.1016/0004-6981(70)90021-1
[9] Griffiths RW, Campbell IH (1990) Stirring and structure in mantle starting plumes. Earth Planet Sci Lett 99:66-78 · doi:10.1016/0012-821X(90)90071-5
[10] Davaille A, Limare A, Touitou F, Kumagai I, Vatteville J (2011) Anatomy of a laminar starting thermal plume at high Prandtl number. Exp Fluids 50:285-300 · doi:10.1007/s00348-010-0924-y
[11] Forbes LK (2008) Spectral solution methods for free-surface flow: the Rayleigh-Taylor problem. ANZIAM J 50:549-568 · Zbl 1359.76213 · doi:10.21914/anziamj.v50i0.1393
[12] Forbes LK (2009) The Rayleigh-Taylor instability for inviscid and viscous fluids. J Eng Math 65:273-290 · Zbl 1180.76023 · doi:10.1007/s10665-009-9288-9
[13] Forbes LK, Chen MJ, Trenham CE (2007) Computing unstable periodic waves at the interface of two inviscid fluids in uniform vertical flow. J Comput Phys 221:269-287 · Zbl 1123.76012 · doi:10.1016/j.jcp.2006.06.010
[14] Forbes LK, Paul RA, Chen MJ, Horsley DE (2015) Kelvin-Helmholtz creeping flow at the interface between two viscous fluids. ANZIAM J 56:317-358 · Zbl 1327.76064 · doi:10.1017/S1446181115000085
[15] Forbes LK (2014) Planar Rayleigh-Taylor instabilities: outflows from a binary line-source system. J Eng Math 89:73-99 · Zbl 1359.76118 · doi:10.1007/s10665-014-9710-9
[16] Krasny R (1986) Desingularization of periodic vortex sheet roll-up. J Comput Phys 65:292-313 · Zbl 0591.76059 · doi:10.1016/0021-9991(86)90210-X
[17] Williamson N, Srinarayana N, Armfield SW, McBain GB, Lin W (2008) Low-Reynolds-number fountain behaviour. J Fluid Mech 608:297-317 · Zbl 1145.76309 · doi:10.1017/S0022112008002310
[18] Williamson N, Armfield SW, Lin W (2010) Transition behaviour of weak turbulent fountains. J Fluid Mech 655:306-326 · Zbl 1197.76061 · doi:10.1017/S002211201000087X
[19] Farrow DE, Hocking GC (2006) A numerical model for withdrawal from a two-layer fluid. J Fluid Mech 549:141-157 · doi:10.1017/S0022112005007561
[20] Gray DD, Giorgini A (1976) The validity of the Boussinesq approximation for liquids and gases. Int J Heat Mass Transf 19:545-551 · Zbl 0328.76066 · doi:10.1016/0017-9310(76)90168-X
[21] Lee HG, Kim J (2012) A comparison study of the Boussinesq and the variable density models on buoyancy-driven flows. J Eng Math 75:15-27 · Zbl 1254.76085 · doi:10.1007/s10665-011-9504-2
[22] Christodoulides P, Dias F (2009) Impact of a rising stream on a horizontal plate of finite extent. J Fluid Mech 621:243-258 · Zbl 1171.76328 · doi:10.1017/S0022112008004746
[23] Milne-Thomson LM (1968) Theoretical hydrodynamics. Macmillan, London · Zbl 0164.55802 · doi:10.1007/978-1-349-00517-8
[24] Kreyzig E (1988) Advanced engineering mathematics, 9th edn. Wiley, Hoboken
[25] Sharp DH (1984) An overview of Rayleigh-Taylor instability. Physica D 12:3-18 · Zbl 0577.76047 · doi:10.1016/0167-2789(84)90510-4
[26] Yoshikawa T, Balk AM (2003) A conformal-mapping model for bubbles and fingers of the Rayleigh-Taylor instability. Math Comput Model 38:113-121 · Zbl 1048.76023 · doi:10.1016/S0895-7177(03)90009-4
[27] Batchelor GK (2000) An introduction to fluid dynamics. Cambridge University Press, Cambridge · Zbl 0152.44402 · doi:10.1017/CBO9780511800955
[28] Moore DW (1979) The spontaneous appearance of a singularity in the shape of an evolving vortex sheet. Proc R Soc Lond A 365:105-119 · Zbl 0404.76040 · doi:10.1098/rspa.1979.0009
[29] Hunt GR, Coffrey CJ (2009) Characterising line fountains. J Fluid Mech 623:317-327 · Zbl 1157.76347 · doi:10.1017/S0022112008005144
[30] van den Bremer TS, Hunt GR (2014) Two-dimensional planar plumes and fountains. J Fluid Mech 750:210-244 · doi:10.1017/jfm.2014.246
[31] Lavelle JW (1995) The initial rise of a hydrothermal plume from a line segment source-results form a three-dimensional numerical model. Geophys Res Lett 22:159-162 · doi:10.1029/94GL01463
[32] Yannopoulos PC (2006) An improved integral model for round turbulent buoyant jets. J Fluid Mech 547:267-296 · Zbl 1138.76363 · doi:10.1017/S0022112005007263
[33] Moses E, Zocchi G, Libchaberii A (1993) An experimental study of laminar plumes. J Fluid Mech 251:581-601 · doi:10.1017/S0022112093003532
[34] Kaye NB, Hunt GR (2006) Weak fountains. J Fluid Mech 558:319-328 · Zbl 1094.76035 · doi:10.1017/S0022112006000383
[35] Lin W, Armfield SW (2000) Direct simulation of weak axisymmetric fountains in a homogeneous fluid. J Fluid Mech 403:67-88 · Zbl 0965.76053 · doi:10.1017/S0022112099006953
[36] Desrayaud G, Lauriat G (1993) Unsteady confined buoyant plumes. J Fluid Mech 252:617-646 · doi:10.1017/S002211209300391X
[37] Srinarayana N, Armfield SW, Lin W (2009) Laminar plane fountains impinging on a ceiling with an opposing heat flux. J Heat Mass Transf 52:4545-4552 · Zbl 1177.80058 · doi:10.1016/j.ijheatmasstransfer.2009.03.015
[38] Letchford NA, Forbes LK, Hocking GC (2012) Inviscid and viscous models of axisymmetric fluid jets or plumes. ANZIAM J 53:228-250 · Zbl 1254.76074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.