×

The HyperCASL algorithm: a new approach to the numerical simulation of geophysical flows. (English) Zbl 1261.86002

Summary: We describe a major extension to the Contour-Advective Semi-Lagrangian (CASL) algorithm [D. G. Dritschel and M. H. P. Ambaum, A contour-advective semi-Lagrangian numerical algorithm for simulating fine-scale conservative dynamical fields, Q. J. R. Meteor. Soc. 123, 1097–1130 (1997); The diabatic contour advective semi-Lagrangian algorithm, Mon. Weather Rev. 134, No. 9, 2503–2514 (2006)]. The extension, called ‘HyperCASL’ (HCASL), uses Lagrangian advection of material potential vorticity contours like CASL, but a Vortex-In-Cell (VIC) method for the treatment of diabatic forcing or damping. In this way, HyperCASL is fully Lagrangian regarding advection. A grid is used as in CASL to deal with ‘inversion’ (computing the velocity field from the potential vorticity field).
First, the novel aspects of the algorithm are described including several improvements to the underlying CASL algorithm. All numerical parameters are chosen so as to minimise the computational cost while improving conservation properties. Finally, a thorough inter-code comparison is conducted using a two-dimensional inviscid unforced turbulence test-case. This enables us to point out the advantages of this new algorithm in terms of resolution, computational cost and numerical diffusion compared to other existing methods, namely CASL, VIC and Pseudo-Spectral (PS) methods.

MSC:

86-08 Computational methods for problems pertaining to geophysics
86A05 Hydrology, hydrography, oceanography
76M25 Other numerical methods (fluid mechanics) (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Batchelor, G. K., Computation of the energy spectrum in homogeneous two-dimensional turbulence, Phys. Fluid, 12, Suppl. II, 233-239 (1969) · Zbl 0217.25801
[2] Christiansen, J. P.; Zabusky, N. J., Instability, coalescence and fission of finite-area vortex structures, J. Fluid Mech., 61, 219-243 (1973) · Zbl 0266.76039
[3] G.H. Cottet, M.L. Ould Sahili, M. El Hamraoui, Multi-purpose regridding in vortex methods, in: ESAIM Proceedings Third International Workshop on Vortex Flows and Related Numerical Methods, vol. 7, 1999, pp. 94-103.; G.H. Cottet, M.L. Ould Sahili, M. El Hamraoui, Multi-purpose regridding in vortex methods, in: ESAIM Proceedings Third International Workshop on Vortex Flows and Related Numerical Methods, vol. 7, 1999, pp. 94-103. · Zbl 0942.76057
[4] Dritschel, D. G., Contour surgery: a topological reconnection scheme for extended integrations using contour dynamics, J. Comput. Phys., 77, 240-266 (1988) · Zbl 0642.76025
[5] Dritschel, D. G., Contour dynamics and contour surgery: numerical algorithms for extended, high-resolution modelling of vortex dynamics in two-dimensional, inviscid, incompressible flows, Comput. Phys. Rep., 10, 77-146 (1989)
[6] Dritschel, D. G.; Ambaum, M. H.P., A contour-advective semi-Lagrangian numerical algorithm for simulating fine-scale conservative dynamical fields, Quart. J. Roy. Meteorol. Soc., 123, 1097-1130 (1997)
[7] Dritschel, D. G.; Ambaum, M. H.P., The diabatic contour advective semi-Lagrangian algorithm, Mon. Weather Rev., 134, 9, 2503-2514 (2006)
[8] D.G. Dritschel, J. Fontane, The HyperCASL algorithm, in: Turbulence in the Atmosphere and Oceans Proceedings IUTAM/INI Workshop Held 8-12 December 2008, Springer-Verlag, 2009.; D.G. Dritschel, J. Fontane, The HyperCASL algorithm, in: Turbulence in the Atmosphere and Oceans Proceedings IUTAM/INI Workshop Held 8-12 December 2008, Springer-Verlag, 2009. · Zbl 1261.86002
[9] Dritschel, D. G.; Polvani, L. M.; Mohebalhojeh, A. R., The contour-advective semi-Lagrangian algorithm for the shallow water equations, Mon. Weather Rev., 127, 7, 1551-1565 (1999)
[10] Dritschel, D. G.; Scott, R. K., On the simulation of nearly inviscid two-dimensional turbulence, J. Comput. Phys., 228, 2707-2711 (2009) · Zbl 1159.76031
[11] Dritschel, D. G.; Scott, R. K.; Macaskill, C.; Gottwald, G. A.; Tran, C. V., A unifying scaling theory for vortex dynamics in two-dimensional turbulence, Phys. Rev. Lett., 101, 094501 (2008)
[12] D.G. Dritschel, R.K. Scott, C. Macaskill, G.A. Gottwald, C.V. Tran, Late time evolution of unforced inviscid two-dimensional turbulence. J. Fluid Mech., submitted for publication.; D.G. Dritschel, R.K. Scott, C. Macaskill, G.A. Gottwald, C.V. Tran, Late time evolution of unforced inviscid two-dimensional turbulence. J. Fluid Mech., submitted for publication. · Zbl 1183.76785
[13] Dritschel, D. G.; Tran, C. V.; Scott, R. K., Revisiting Batchelor theory of two-dimensional turbulence, J. Fluid Mech., 591, 379-391 (2007) · Zbl 1169.76351
[14] Dritschel, D. G.; Viúdez, Á., A balanced approach to modelling rotating stably-stratified geophysical flows, J. Fluid Mech., 488, 123-150 (2003) · Zbl 1063.76656
[15] Dritschel, D. G.; Waugh, D. W., Quantification of inelastic interaction of unequal vortices in two-dimensional vortex dynamics, Phys. Fluid A, 4, 1737-1744 (1992)
[16] Dritschel, D. G.; Zabusky, N. J., On the nature of vortex interactions and models in unforced nearly-inviscid two-dimensional turbulence, Phys. Fluid, 8, 1252-1256 (1996) · Zbl 1086.76035
[17] Kraichnan, R. H., Inertial ranges in two-dimensional turbulence, Phys. Fluid, 10, 1417-1423 (1967)
[18] Matthaeus, W. H.; Stribling, W. T.; Matinez, D.; Oughton, S.; Montgomery, D., Selective decay and coherent vortices in two-dimensional incompressible flows, Phys. Rev. Lett., 66, 2731-2734 (1991)
[19] Montgomery, D.; Matthaeus, W. H.; Stribling, W. T.; Matinez, D.; Oughton, S., Relaxation in two dimensions and the “sinh-Poisson” equation, Phys. Fluid A, 4, 3-6 (1992) · Zbl 0850.76485
[20] Pierrehumbert, R. T., The hydrologic cycle in deep time climate problems, Nature, 419, 191-198 (2002)
[21] T.M. Schaerf, On Contour Crossings in Contour-advective Simulations of Geophysical Fluid Flows, Ph.D. Thesis, University of Sydney, 2006, 197 pp.; T.M. Schaerf, On Contour Crossings in Contour-advective Simulations of Geophysical Fluid Flows, Ph.D. Thesis, University of Sydney, 2006, 197 pp.
[22] Tran, C. V.; Dritschel, D. G., Vanishing enstrophy dissipation in two-dimensional Navier-Stokes turbulence in the inviscid limit, J. Fluid Mech., 559, 107-116 (2006) · Zbl 1095.76028
[23] Vallis, G. K., Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-scale Circulation (2006), Cambridge University Press, 745pp · Zbl 1374.86002
[24] Zabusky, N. J.; Hughesand, M.; Roberts, K. V., Contour dynamics for the Euler equations in two dimensions, J. Comput. Phys., 30, 96-106 (1979) · Zbl 0405.76014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.