×

Minimal control effort and time Lie-group synchronisation design based on proportional-derivative control. (English) Zbl 1482.93198

Summary: The present paper introduces a novel minimal control-effort and control-time, proportional-derivative feedback control theory for second-order dynamical systems on Lie groups. The devised control theory is particularised to achieve time-synchronisation of rotational systems, with special reference to a master-slave pair of quad-rotor drones. Minimal control-effort and control-time regulation is achieved through an empirical algorithm to infer the optimal values of the proportional and derivative gain.

MSC:

93B52 Feedback control
93C85 Automated systems (robots, etc.) in control theory
70G65 Symmetries, Lie group and Lie algebra methods for problems in mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ayala, V.; Da Silva, A.; San Martin, L., Control systems on flag manifolds and their chain control sets, Discrete & Continuous Dynamical Systems - A, 37, 2301-2313 (2017) · Zbl 1357.93048 · doi:10.3934/dcds.2017101
[2] Becker, M.; Sampaio, R.; Bouabdallah, S.; de Perrot, V.; Siegwart, R., In-flight collision avoidance controller based only on OS4 embedded sensors, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 34, 3, 294-307 (2012) · doi:10.1590/S1678-58782012000300010
[3] Bloch, A.; Krishnaprasad, P.; Marsden, J.; Ratiu, T., The Euler-Poincaré equations and double bracket dissipation, Communications in Mathematical Physics, 175, 1-42 (1996) · Zbl 0846.58048 · doi:10.1007/BF02101622
[4] Brockett, R. (1973). Lie algebras and Lie groups in control theory. In D. Mayne & R. Brockett (Eds.), Geometric methods in system theory (pp. 43-82). Springer Netherlands. · Zbl 0305.93003
[5] Chen, B.; Hsu, C., Robust synchronization control scheme of a population of nonlinear stochastic synthetic genetic oscillators under intrinsic and extrinsic molecular noise via quorum sensing, BMC Systems Biology, 26, 6, 136 (2012) · doi:10.1186/1752-0509-6-136
[6] Fiori, S., Model formulation over Lie groups and numerical methods to simulate the motion of gyrostats and quadrotors, Mathematics (MDPI), 7, 10, 935 (2019) · doi:10.3390/math7100935
[7] Fiori, S., Synchronization of first-order autonomous oscillators on Riemannian manifolds, Discrete & Continuous Dynamical Systems - Series B (AIMS), 24, 4, 1725-1741 (2019) · Zbl 1416.37078 · doi:10.3934/dcdsb.2018233
[8] Fiori, S., A control-theoretic approach to the synchronization of second-order continuous-time dynamical systems on real connected Riemannian manifolds, SIAM Journal on Control and Optimization, 58, 2, 787-813 (2020) · Zbl 1435.93052 · doi:10.1137/18M1235727
[9] Függer, M., Nowak, T., & Charron-Bost, B. (2015, March). Diffusive clock synchronization in highly dynamic networks. In Proceedings of the 49th annual conference on information sciences and systems (CISS), IEEE (pp. 1-6). · Zbl 1417.68012
[10] Gajbhiye, S.; Banavar, R., The Euler-Poincaré equations for a spherical robot actuated by a pendulum, IFAC Proceedings Volumes, 45, 19, 72-77 (2012) · doi:10.3182/20120829-3-IT-4022.00011
[11] Gaponov, I., & Razinkova, A (2012, August). Quadcopter design and implementation as a multidisciplinary engineering course. In Proceedings of IEEE international conference on teaching, assessment, and learning for engineering (TALE) 2012 (pp. H2B-16-H2B-19).
[12] Jakubzyk, B (2002). Introduction to geometric nonlinear control: Controllability and Lie bracket. Abdus Salam International Center Theoret Physics, Trieste, Italy. (Mathematical control theory, Lectures notes of a minicourse (pp. 107-168). · Zbl 1017.93034
[13] Jouan, P., Equivalence of control systems with linear systems on Lie groups and homogeneous spaces, ESAIM: Control, Optimisation and Calculus of Variations, 16, 4, 956-973 (2010) · Zbl 1210.93024
[14] Junejo, N.; Esmaiel, H.; Sun, H.; Qasem, Z.; Wang, J., Pilot-based adaptive channel estimation for underwater spatial modulation technologies, Symmetry, 11, 5, 711 (2019) · doi:10.3390/sym11050711
[15] Jurdjevic, V., Optimal control on Lie groups and integrable Hamiltonian systems, Regular and Chaotic Dynamics, 16, 5, 514-535 (20117) · Zbl 1309.49004 · doi:10.1134/S156035471105008X
[16] Jurdjevic, V.; Sussmann, H., Control systems on Lie groups, Journal of Differential Equations, 12, 2, 313-329 (1972) · Zbl 0237.93027 · doi:10.1016/0022-0396(72)90035-6
[17] Leonard, N., & Krishnaprasad, P. (1994). Control of switched electrical networks using averaging on Lie groups. In Proceedings of the 33rd IEEE conference on decision and control, IEEE (pp. 1919-1924).
[18] Liu, Y.; Geng, Z., Finite-time optimal tracking control for dynamic systems on Lie groups, Asian Journal of Control, 17, 3, 994-1005 (2015) · Zbl 1334.49005 · doi:10.1002/asjc.946
[19] Liu, C.; Tang, S.; Guo, J., Intrinsic optimal control for mechanical systems on Lie group, Advances in Mathematical Physics, 2017 (2017) · Zbl 1401.49033 · doi:10.1155/2017/6302430
[20] Maithripala, D.; Dayawansa, W.; Berg, J., Intrinsic observer-based stabilization for simple mechanical systems on Lie groups, SIAM Journal on Control and Optimization, 44, 5, 1691-1711 (2005) · Zbl 1134.93015 · doi:10.1137/S0363012904439891
[21] Mei, J.; Jiang, M.; Xu, W.; Wang, B., Finite-time synchronization control of complex dynamical networks with time delay, Communications in Nonlinear Science and Numerical Simulation, 18, 9, 2462-2478 (2013) · Zbl 1311.34157 · doi:10.1016/j.cnsns.2012.11.009
[22] Mladenova, C. (1992, May). Robot modeling and control over extended configurational manifold. In Proceedings 1992 IEEE international conference on robotics and automation (pp. 326-331). IEEE Computer Society. https://doi.IEEEcomputersociety.org/
[23] Monroy-Pérez, F.; Anzaldo-Meneses, A., Optimal control on nilpotent Lie groups, Journal of Dynamical and Control Systems, 8, 4, 487-504 (20021) · Zbl 1055.49018 · doi:10.1023/A:1020711301924
[24] Pavlov, A., Steur, E., & van de Wouw, N. (2009, December). Controlled synchronization via nonlinear integral coupling. In Proceedings of the 48th IEEE conference on decision and control (CDC) held jointly with the 28th chinese control conference, IEEE (pp. 5263-5268).
[25] Saccon, A.; Hauser, J.; Aguiar, A. P., Optimal control on Lie groups: The projection operator approach, IEEE Transactions on Automatic Control, 58, 9, 2230-2245 (2013) · Zbl 1369.49037 · doi:10.1109/TAC.2013.2258817
[26] Sastry, S. (1999). Geometric nonlinear control. In S. Sastry (Ed.), Nonlinear systems – analysis, stability, and control (pp. 510-573). Springer Science+Business Media. · Zbl 0924.93001
[27] Tahir, S., The synchronization of identical memristors systems via Lyapunov direct method, Applied and Computational Mathematics, 2, 6, 130-136 (2013) · doi:10.11648/j.acm.20130206.14
[28] Tyagi, A., & Davis, J. (2008, June). A recursive filter for linear systems on Riemannian manifolds. In 2008 IEEE conference on computer vision and pattern recognition, IEEE (pp. 1-8).
[29] Wu, J.; Bai, Y.; Zhang, L., Distributed time synchronization in wireless sensor networks via second-order consensus algorithms, Transactions of Tianjin University, 21, 2, 113-121 (2015) · doi:10.1007/s12209-015-2579-5
[30] Xi, X.; Mobayen, S.; Ren, H.; Jafari, S., Robust finite-time synchronization of a class of chaotic systems via adaptive global sliding mode control, Journal of Vibration and Control, 24, 17, 3842-3854 (2018) · doi:10.1177/1077546317713532
[31] Yu, W.; Pan, Z., Dynamical equations of multibody systems on Lie groups, Advances in Mechanical Engineering, 7, 3, 1-9 (2015) · doi:10.1177/1687814015575959
[32] Zakerimanesh, A.; Hashemzadeh, F.; Torabi, A.; Tavakoli, M., Controlled synchronization of nonlinear teleoperation in task-space with time-varying delays, International Journal of Control, Automation and Systems, 17, 1875-1883 (2019) · doi:10.1007/s12555-018-0120-z
[33] Zhang, Z.; Ling, Z.; Sarlette, A., Modified integral control globally counters symmetry-breaking biases, Symmetry, 11, 5, 639 (2019) · Zbl 1425.70042 · doi:10.3390/sym11050639
[34] Zhang, Z.; Sarlette, A.; Ling, Z., Integral control on Lie groups, Systems & Control Letters, 80, 9-15 (2015) · Zbl 1330.93128 · doi:10.1016/j.sysconle.2015.02.009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.