×

A functional central limit theorem for a nonequilibrium model of interacting particles with unbounded intensity. (English) Zbl 1099.82508

Summary: Under suitable physically reasonable initial assumptions, a functional central limit theorem is obtained for a nonequilibrium model of randomly interacting particles with unbounded jump intensity. This model is related to a nonlinear Boltzmann-type equation.

MSC:

82C22 Interacting particle systems in time-dependent statistical mechanics
60K35 Interacting random processes; statistical mechanics type models; percolation theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] P. Billingsley,Convergence of Probability Measures (Wiley, New York, 1968). · Zbl 0172.21201
[2] R. Ferland, Equations de Boltzmann scalaires: convergence, fluctuations et propagation du choas trajectorielle, Ph.D. thesis, Université de Sherbrooke (1989).
[3] R. Ferland, X. Fernique, and G. Giroux, Compactness of the fluctuations associated with some generalized nonlinear Boltzmann equations;Can. J. Math. 44:1192-1205 (1992). · Zbl 0767.60097
[4] R. Ferland and J. C. Roberge, Binomial Boltzmann Processes: Convergence of the Fluctuations, Technical Report 193, Département de mathématiques et d’informatique, Université du Québec à Montréal (1992). · Zbl 0810.60098
[5] X. Fernique, Convergence en loi des fonctions aléatoires continues ou cadlag, propriétés de compacité des lois, inLecture Notes in Mathematixcs, No. 1485 (Springer-Verlag, Berlin, 1991), pp. 178-195.
[6] K. Ito,Foundation of Stochastic Differential Equations in Infinite Dimensional Spaces (Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, 1984).
[7] J. Jacob and A. N. Shiryaev,Limit Theorems for Stochastic Processes (Springer-Verlag, Berlin, 1987). · Zbl 0635.60021
[8] M. Kac, Some probabilistic aspects of the Boltzmann equation,Acta Phys. Aust. Suppl. 10:379-400 (1973).
[9] J. Keizer,Statistical Thermodynamics of Nonequilibrium Processes (Springer-Verlag, New York, 1987).
[10] H. P. McKean, Fluctuation in the kinetic theory of gases,Commun. Pure Appl. Math. 28:435-455 (1975). · doi:10.1002/cpa.3160280402
[11] K. R. Parthasarathy,Probability Measures on Metric Spaces (Academic Press, New York, 1969). · Zbl 0188.20202
[12] A. V. Skorohod,Stochastic Equations for Complex Systems (Reidel, Dordrecht, 1988).
[13] H. Spohn,Large Scale Dynamics of Interacting Particles (Springer-Verlag, New York, 1991). · Zbl 0742.76002
[14] A.-S. Sznitman, Équations de type de Boltzmann, spatialement homogénes,Z. Wahrsch. Verw. Gebiete 66:559-592 (1984). · Zbl 0553.60069 · doi:10.1007/BF00531891
[15] H. Tanaka, Fluctuation theory for Kac’s one-dimensional model of Maxwellian molecules,Sankhy\={}a Ser. A 44:23-26 (1982). · Zbl 0586.60081
[16] K. Uchiyama, Fluctuations of Markovian systems in Kac’s caricature of a Maxwellian gas,J. Math. Soc. Jpn. 35(3):477-499 (1983). · Zbl 0513.60080 · doi:10.2969/jmsj/03530477
[17] K. Uchiyama, A fluctuations problem associated with the Boltzmann equation for a gas a molecules with a cutoff potential,Jpn. J. Math. 9:27-53 (1983). · Zbl 0524.60099
[18] W. Wagner, A convergence proof for Bird’s direct simulation Monte Carlo method for the Boltzmann equation,J. Stat. Phys. 66:689-722 (1992). · Zbl 0899.76312 · doi:10.1007/BF01055714
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.