zbMATH — the first resource for mathematics

Between the event calculus and finite state temporality. (English) Zbl 06658634
Foret, Annie (ed.) et al., Formal grammar. 20th and 21st international conferences, FG 2015, Barcelona, Spain, August 2015. Revised selected papers. FG 2016, Bozen, Italy, August 2016. Proceedings. Berlin: Springer (ISBN 978-3-662-53041-2/pbk; 978-3-662-53042-9/ebook). Lecture Notes in Computer Science 9804, 112-129 (2016).
Summary: Event calculus formulas dealing with instantaneous and continuous change are translated into regular languages interpreted relative to finite models. It is shown that a model over the real line for a restricted class of these event calculus formulas (relevant for natural language semantics) can be transformed into a finite partition of the real line, satisfying the regular languages. Van Lambalgen and Hamm’s treatment of type coercion is reduced to changes in the alphabet from which the strings are formed.
For the entire collection see [Zbl 1343.68007].
68Q42 Grammars and rewriting systems
Full Text: DOI
[1] Allen, J.F.: An interval-based representation of temporal knowledge. IJCAI 1, 221–226 (1981)
[2] Allen, J.F., Ferguson, G.: Actions and events in interval temporal logic. In: Stock, O. (ed.) Spatial and Temporal Reasoning, pp. 205–245. Springer, Dordrecht (1997) · doi:10.1007/978-0-585-28322-7_7
[3] Bennett, M., Partee, B.H.: Toward the logic of tense and aspect in English. Wiley Online Library (1978)
[4] Comrie, B.: Aspect: An Introduction to the Study of Verbal Aspect and Related Problems. Cambridge University Press, Cambridge (1976)
[5] Croft, W.: The structure of events. In: Tomasello, M. (ed.) The New Psychology of Language, Chap. 3. Lawrence Erlbaum Associates, Mahwah (1998)
[6] Fernando, T.: Finite-state temporal projection. In: Ibarra, O.H., Yen, H.-C. (eds.) CIAA 2006. LNCS, vol. 4094, pp. 230–241. Springer, Heidelberg (2006) · Zbl 1160.03301 · doi:10.1007/11812128_22
[7] Fernando, T.: Temporal propositions as regular languages. In: 6th International Workshop on Finite-State Methods and Natural Language Processing, pp. 132–48 (2008)
[8] Fernando, T.: Partitions representing change homogeneously. In: Aloni, M., Franke, M., Roelofsen, F. (eds.) A festschrift for Jeroen Groenendijk, Martin Stokhof, and Frank Veltman, pp. 91–95. Onbekend (2013)
[9] Fernando, T.: Segmenting temporal intervals for tense and aspect. In: The 13th Meeting on the Mathematics of Language, p. 30 (2013) · Zbl 1376.03019
[10] Fernando, T.: Incremental semantic scales by strings. In: EACL 2014, p. 63 (2014) · doi:10.3115/v1/W14-1408
[11] Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. J. ACM (JACM) 38(4), 935–962 (1991) · Zbl 0799.68175 · doi:10.1145/115234.115351
[12] Hamm, F., van Lambalgen, M.: Nominalization, the progressive and event calculus. Linguist. Philos. 26, 381–458 (2003) · doi:10.1023/A:1024618703103
[13] Kennedy, C., Levin, B.: Measure of change: the adjectival core of degree achievements. In: McNally, L., Kennedy, C. (eds.) Adjectives and Adverbs: Syntax, Semantics and Discourse, pp. 156–182. Oxford University Press, Oxford (2008)
[14] Kowalski, R., Sergot, M.: A logic-based calculus of events. In: Schmidt, J.W., Thanos, C. (eds.) Foundations of Knowledge Base Management, pp. 23–55. Springer, Heidelberg (1989) · Zbl 1356.68221 · doi:10.1007/978-3-642-83397-7_2
[15] van Lambalgen, M., Hamm, F.: The Proper Treatment of Events. Wiley, New York (2005) · Zbl 1080.03011 · doi:10.1002/9780470759257
[16] Moens, M., Steedman, M.: Temporal ontology and temporal reference. Comput. Linguist. 14(2), 15–28 (1988)
[17] Pulman, S.G.: Aspectual shift as type coercion. Trans. Philol. Soc. 95(2), 279–317 (1997) · doi:10.1111/1467-968X.00020
[18] Solt, S.: Measurement scales in natural language. Lang. Linguist. Compass 9(1), 14–32 (2015) · doi:10.1111/lnc3.12101
[19] Vendler, Z.: Verbs and times. The Philos. Rev. 66, 143–160 (1957) · doi:10.2307/2182371
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.