×

Synchronisation and control of proliferation in cycling cell population models with age structure. (English) Zbl 1519.92024

Summary: We present and analyse in this article a mathematical question with a biological origin, the theoretical treatment of which may have far-reaching implications in the practical treatment of cancers. Starting from biological and clinical observations on cancer cells, tumour-bearing laboratory rodents, and patients with cancer, we ask from a theoretical biology viewpoint questions that may be transcribed, using physiologically based modelling of cell proliferation dynamics, into mathematical questions. We then show how recent fluorescence-based image modelling techniques performed at the single cell level in proliferating cell populations allow to identify model parameters and how this may be applied to investigate healthy and cancer cell populations. Finally, we show how this modelling approach allows us to design original optimisation methods for anticancer therapeutics, in particular chronotherapeutics, by controlling eigenvalues of the differential operators underlying the cell proliferation dynamics, in tumour and in healthy cell populations. We propose a numerical algorithm to implement these principles.

MSC:

92C15 Developmental biology, pattern formation
92C37 Cell biology
92C32 Pathology, pathophysiology
92B25 Biological rhythms and synchronization
35Q92 PDEs in connection with biology, chemistry and other natural sciences

Software:

PLCP; SQPlab
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Altinok, A.; Gonze, D.; Lévi, F.; Goldbeter, A., An automaton model for the cell cycle, Interface Focus, 1, 36-47 (2011)
[2] Altinok, A.; Lévi, F.; Goldbeter, A., A cell cycle automaton model for probing circadian patterns of anticancer drug delivery, Advanced Drug Delivery Reviews, 59 (2007), 1036-1010
[3] Altinok, A.; Lévi, F.; Goldbeter, A., Identifying mechanisms of chronotolerance and chronoefficacy for the anticancer drugs 5-fluorouracil and oxaliplatin by computational modeling, European Journal of Pharmaceutical Sciences, 36, 20-38 (2009)
[4] Arino, O., A survey of structured cell population dynamics, Acta Biotheoretica, 43, 3-25 (1995)
[5] Arino, O.; Kimmel, M., Comparison of approaches to modeling of cell population dynamics, SIAM Journal on Applied Mathematics, 53, 1480-1504 (1993) · Zbl 0796.92019
[6] Arino, O.; Sanchez, E., A survey of cell population dynamics, Journal of Theoretical Medicine, 1, 35-51 (1997) · Zbl 0964.92506
[7] Ausserlechner, M. J.; Obexer, P.; Böck, G.; Geley, S.; Kofler, R., Cyclin D3 and c-MYC control glucocorticoid-induced cell cycle arrest but not apoptosis in lymphoblastic leukemia cells, Cell Death and Differentiation, 11, 165-174 (2004)
[8] Baghdassarian, N.; Catallo, R.; Mahly, M. A.; Ffrench, P.; Chizat, F.; Bryon, P. A.; Ffrench, M., Glucocorticoids induce G1 as well as S-phase lengthening in normal human stimulated lymphocytes: differential effects on cell cycle regulatory proteins, Experimental Cell Research, 240, 263-273 (1998)
[9] Basdevant, C.; Clairambault, J.; Lévi, F., Optimisation of time-scheduled regimen for anti-cancer drug infusion, Mathematical Modelling and Numerical Analysis, 39, 1069-1086 (2006) · Zbl 1078.92027
[10] Bekkal Brikci, F.; Clairambault, J.; Perthame, B., Analysis of a molecular structured population model with polynomial growth for the cell cycle, Mathematical and Computer Modelling, 47, 699-713 (2008) · Zbl 1134.92012
[11] Bekkal Brikci, F.; Clairambault, J.; Ribba, B.; Perthame, B., An age-and-cyclin-structured cell population model for healthy and tumoral tissues, Journal of Mathematical Biology, 57, 91-110 (2008) · Zbl 1148.92014
[12] Berman, A.; Plemmons, R. J., Nonnegative matrices in the mathematical sciences, American Mathematical Society (1994) · Zbl 0815.15016
[13] Bernard, S.; ˇCajavec Bernard, B.; Lévi, F.; Herzel, H., Tumor growth rate determines the timing of optimal chronomodulated treatment schedules, PLoS Computational Biology, 6, 3, e1000712 (2010)
[14] Bernard, S.; Pujo-Menjouet, L.; Mackey, M. C., Analysis of cell kinetics using a cell division marker: mathematical modeling of experimental data, Biophysical Journal, 84, 3414-3424 (2003)
[15] Bertsekas, D. P., On the Goldstein - Levitin - Polyak gradient projection method, IEEE Transactions on Automatic Control, AC-21, 174-184 (1976) · Zbl 0326.49025
[16] D.P. Bertsekas, Constrained Optimization and Lagrange multiplier method, Academic Press, NY; republished by Athena Scientific, MA, 1997, 1982.; D.P. Bertsekas, Constrained Optimization and Lagrange multiplier method, Academic Press, NY; republished by Athena Scientific, MA, 1997, 1982. · Zbl 0572.90067
[17] Bertsekas, D. P., Nonlinear Programming (1995), Athena Scientific · Zbl 0935.90037
[18] F. Billy, J. Clairambault, O. Fercoq, Optimisation of cancer drug treatments using cell population dynamics, in: U. Ledzewicz, H. Schättler, A. Friedman, E. Kashdan (Eds.), Mathematical Methods and Models in Biomedicine, Springer, 2012, pp. 263-299.; F. Billy, J. Clairambault, O. Fercoq, Optimisation of cancer drug treatments using cell population dynamics, in: U. Ledzewicz, H. Schättler, A. Friedman, E. Kashdan (Eds.), Mathematical Methods and Models in Biomedicine, Springer, 2012, pp. 263-299.
[19] Bjarnason, G. A.; Jordan, R. C.K.; Sothern, R. B., Circadian variation in the expression of cell-cycle proteins in the human oral epithelium, American Journal of Pathology, 154, 613-622 (1999)
[20] Bjarnason, G. A.; Jordan, R. C.K.; Wood, P. A.; Li, Q.; Lincoln, D. W.; Sothern, R. B.; Hrushesky, W. J.; Ben-David, Y., Circadian expression of clock genes in human oral mucosa and skin: association with specific cell-cycle phases, American Journal of Pathology, 158, 1793-1801 (2001)
[21] Bocci, G.; Danesi, R.; Di Paolo, A. D.; Innocenti, F.; Allegrini, G.; Falcone, A., Comparative pharmacokinetic analysis of 5-fluorouracil and its major metabolite 5-fluoro-5,6-dihydrouracil after conventional and reduced test dose in cancer patients, Clinical Cancer Research, 6, 3032-3037 (2000)
[22] Bonnans, J. F.; Gilbert, J. C.; Lemaréchal, C.; Sagastizábal, C., Numerical Optimization - Theoretical and Practical Aspects, Universitext (2006), Springer Verlag: Springer Verlag Berlin · Zbl 1108.65060
[23] Buijs, R. M.; Kalsbeek, A., Hypothalamic integration of central and peripheral clocks, Nature Reviews: Neuroscience, 2, 521-526 (2001)
[24] Burns, F. J.; Tannock, I. F., On the existence of a \(G_0\) phase in the cell cycle, Cell and Tissue Kinetics, 3, 321-334 (1970)
[25] Chiorino, G.; Metz, J. A.J.; Tomasoni, D.; Ubezio, P., Desynchronization rate in cell populations: mathematical modeling and experimental data, Journal of Theoretical Biology, 208, 185-199 (2001)
[26] Cicenas, J.; Valius, M., The cdk inhibitors in cancer research and therapy, Journal of Cancer Research and Clinical Oncology, 137, 1409-1418 (2011)
[27] Clairambault, J., Modelling oxaliplatin drug delivery to circadian rhythm in drug metabolism and host tolerance, Advanced Drug Delivery Reviews, 59, 1054-1068 (2007)
[28] Clairambault, J., A step toward optimization of cancer therapeutics physiologically based modelling of circadian control on cell proliferation, IEEE-EMB Magazine, 27, 20-24 (2008)
[29] Clairambault, J., Modelling physiological and pharmacological control on cell proliferation to optimise cancer treatments, Mathematical Modelling of Natural Phenomena, 4, 12-67 (2009) · Zbl 1165.92021
[30] Clairambault, J., Optimising cancer pharmacotherapeutics using mathematical modelling and a systems biology approach, Personalized Medicine, 8, 271-286 (2011)
[31] Clairambault, J.; Gaubert, S.; Lepoutre, T., Comparison of Perron and Floquet eigenvalues in age structured cell division models, Mathematical Modelling of Natural Phenomena, 4, 183-209 (2009) · Zbl 1177.35052
[32] Clairambault, J.; Gaubert, S.; Lepoutre, T., Circadian rhythm and cell population growth, Mathematical and Computer Modelling, 53, 1558-1567 (2011) · Zbl 1219.35323
[33] Clairambault, J.; Gaubert, S.; Perthame, B., An inequality for the Perron and Floquet eigenvalues of monotone differential systems and age-structured equations, Comptes Rendus De L’Academie Des Sciences Serie I Mathématique, 345, 549-554 (2007) · Zbl 1141.34326
[34] J. Clairambault, B. Laroche, S. Mischler, B. Perthame, A mathematical model of the cell cycle and its control, Technical Report, INRIA, Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France), 2003.; J. Clairambault, B. Laroche, S. Mischler, B. Perthame, A mathematical model of the cell cycle and its control, Technical Report, INRIA, Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France), 2003.
[35] Clairambault, J.; Michel, P.; Perthame, B., Circadian rhythm and tumour growth, Comptes Rendus De L’Academie Des Sciences Serie I Mathématique (Équations aux dérivées partielles), 342, 17-22 (2006) · Zbl 1089.92022
[36] Clairambault, J.; Michel, P.; Perthame, B., A model of the cell cycle and its circadian control, (Deutsch, A.; Brusch, L.; Byrne, H.; de Vries, G.; Herzel, J., Mathematical Modeling of Biological Systems, Volume I: Cellular Biophysics, Regulatory Networks, Development, Biomedicine, and Data Analysis (2007), Birkhäuser: Birkhäuser Boston), 239-251
[37] Cohen, A. A.; Kalisky, T.; Mayo, A.; Geva-Zatorsky, N.; Danon, T.; Issaeva, I.; Kopito, R.; Perzov, N.; Milo, R.; Sigal, A.; Alon, U., Protein dynamics in individual human cells: experiment and theory, PLoS One, 4, 1-12 (2009), E4901
[38] Diasio, R. B.; Harris, B. E., Clinical pharmacology of 5-fluorouracil, Clinical Pharmacokinetics, 16, 215-237 (1989)
[39] Filipski, E.; Innominato, P. F.; Wu, M. W.; Li, X. M.; Iacobelli, S.; Xian, L. J.; Lévi, F., Effect of light and food schedules on liver and tumor molecular clocks in mice, Journal of the National Cancer Institute, 97, 507-517 (2005)
[40] Filipski, E.; King, V. M.; Li, X. M.; Granda, T. G.; Lévi, F., Host circadian clock as a control point in tumor progression, Journal of the National Cancer Institute, 94, 690-697 (2002)
[41] Fu, L.; Pelicano, H.; Liu, J.; Huang, P.; Lee, C. C., The circadian gene per2 plays an important role in tumor suppression and DNA damage response in vivo, Cell, 111, 41-50 (2002)
[42] S.P. Garbett, P. Gabriel, D.R. Tyson, G.F. Webb, V. Quaranta. The contribution of age structure to cell population responses to targeted therapeutics, in revision.; S.P. Garbett, P. Gabriel, D.R. Tyson, G.F. Webb, V. Quaranta. The contribution of age structure to cell population responses to targeted therapeutics, in revision.
[43] Goldie, J. H.; Coldman, A. J., Drug Resistance in Cancer: Mechanisms and Models (1998), Cambridge University Press
[44] Goldstein, A. A., Convex programming in hilbert space, Bulletin of the American Mathematical Society, 70, 709-710 (1964) · Zbl 0142.17101
[45] Goldstein, A. A., Constructive Real Analysis (1967), Harper & Row: Harper & Row New York · Zbl 0189.49703
[46] Golub, G. H.; Van Loan, C. F., Matrix Computations (1989), Johns Hopkins University Press: Johns Hopkins University Press Baltimore, MD · Zbl 0733.65016
[47] Gréchez-Cassiau, A.; Rayet, B.; Guillaumond, F.; Teboul, M.; Delaunay, F., The circadian clock component bmal1 is a critical regulator of p21(waf1/cip1) expression and hepatocyte proliferation, Journal of Biological Chemistry, 283, 4535-4542 (2008)
[48] Gyllenberg, M.; Osipov, A.; Päivärinta, L., The inverse problem of linear age-structured population dynamics, Journal of Evolution Equations, 2, 223-239 (2002) · Zbl 1054.35128
[49] Kastan, M. B.; Bartek, J., Cell-cycle checkpoints and cancer, Nature, 432, 316-323 (2004)
[50] Kato, T., Perturbation Theory for Linear Operators (1966), Springer-Verlag Berlin and Heidelberg GmbH & Co. K · Zbl 0148.12601
[51] Kimmel, M.; Świerniak, A., Control theory approach to cancer chemotherapy: benefiting from phase dependence and overcoming drug resistance, (Friedman, A., Tutorials in Mathematical Biosciences III, Volume 1872 of Lecture Notes in Mathematics (2006), Springer Berlin/Heidelberg), 185-221 · Zbl 1122.92030
[52] Komarova, N.; Wodarz, D., Drug resistance in cancer: principles of emergence and prevention, Proceedings of the National Academy of Sciences of the United States of America, 102, 9714-9719 (2005)
[53] Konopka, R. K.; Benzer, S., Clock mutants of drosophila melanogaster, Proceedings of the National Academy of Sciences of the United States of America, 68, 2112-2116 (1971)
[54] Kramer, A.; Yang, F.; Snodgrass, P.; Li, X.; Scammell, T. E., Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling, Science, 294, 2511-2515 (2001)
[55] T. Lepoutre, Analyse et modélisation de phénomènes de croissance et mouvement issus de la biologie, Ph.D. thesis, Université Paris VI Pierre et Marie Curie, 4, place Jussieu - 75005 Paris (France), 2009. Available online from http://tel.archives-ouvertes.fr/tel-00457561/fr/; T. Lepoutre, Analyse et modélisation de phénomènes de croissance et mouvement issus de la biologie, Ph.D. thesis, Université Paris VI Pierre et Marie Curie, 4, place Jussieu - 75005 Paris (France), 2009. Available online from http://tel.archives-ouvertes.fr/tel-00457561/fr/
[56] Lévi, F., Cancer chronotherapeutics, Special Issue of Chronobiology International, 19, 1-19 (2002)
[57] Lévi, F., Chronotherapeutics: the relevance of timing in cancer therapy, Cancer Causes Control, 17, 611-621 (2006)
[58] Lévi, F., The circadian timing system: a coordinator of life processes. implications for the rhythmic delivery of cancer therapeutics, IEEE-EMB Magazine, 27, 17-20 (2008)
[59] Lévi, F.; Altinok, A.; Clairambault, J.; Goldbeter, A., Implications of circadian clocks for the rhythmic delivery of cancer therapeutics, Philosophical Transactions of the Royal Society of London Series A, 366, 3575-3598 (2008)
[60] Lévi, F.; Okyar, A.; Dulong, S.; Innominato, P. F.; Clairambault, J., Circadian timing in cancer treatments, Annual Review of Pharmacology and Toxicology, 50, 377-421 (2010)
[61] Lévi, F.; Schibler, U., Circadian rhythms: mechanisms and therapeutic implications, Annual Review of Pharmacology and Toxicology, 47, 493-528 (2007)
[62] Lewis, A. S.; Overton, M. L., Eigenvalue optimization, Acta Numerica, 5, 149-190 (1996) · Zbl 0870.65047
[63] H. Lodish, A. Berk, C.A. Kaiser, M. Krieger, M.P. Scott, A. Bretscher, H. Ploegh, P.T. Matsudaira, Molecular Cell Biology, 6th ed., W.H. Freeman, New York, 2007.; H. Lodish, A. Berk, C.A. Kaiser, M. Krieger, M.P. Scott, A. Bretscher, H. Ploegh, P.T. Matsudaira, Molecular Cell Biology, 6th ed., W.H. Freeman, New York, 2007.
[64] Ma, L.; Wagner, J.; Rice, J. J.; Hu, W.; Levine, A. J.; Stolovitzky, G. A., A plausible model for the digital response of p53 to DNA damage, Proceedings of the National Academy of Sciences, 102, 14266-14271 (2005)
[65] Matsuo, T.; Yamaguchi, S.; Mitsuia, S.; Emi, A.; Shimoda, F.; Okamura, H., Control mechanism of the circadian clock for timing of cell division in vivo, Science, 302, 255-259 (2003)
[66] McAdams, H. H.; Arkin, A., Stochastic mechanisms in gene expression, Proceedings of the National Academy of Sciences of the United States of America, 31, 814-819 (1997)
[67] McKendrick, A. G., Applications of mathematics to medical problems, Proceedings of the Edinburgh Mathematical Society, 54, 98-130 (1926) · JFM 52.0542.04
[68] J.A.J. Metz, O. Diekmann, The Dynamics of Physiologically Structured Populations, Volume 68 of Lecture Notes in Biomathematics, Springer, New York, 1986.; J.A.J. Metz, O. Diekmann, The Dynamics of Physiologically Structured Populations, Volume 68 of Lecture Notes in Biomathematics, Springer, New York, 1986. · Zbl 0614.92014
[69] Michel, P.; Mischler, S.; Perthame, B., General entropy equations for structured population models and scattering, Comptes Rendus De L’Academie Des Sciences Serie I Mathématique, 338, 697-702 (2004) · Zbl 1049.35070
[70] Michel, P.; Mischler, S.; Perthame, B., The entropy structure of models of structured population dynamics. General Relative Entropy inequality: an illustration on growth models, Journal de Mathematiques Pures et Appliquees, 84, 1235-1260 (2005) · Zbl 1085.35042
[71] Morgan, D., The Cell Cycle: Principles of Control (2006), Primers in Biology series: Primers in Biology series Oxford University Press
[72] Mormont, M. C.; Waterhouse, J.; Bleuzen, P.; Giacchetti, S.; Ami, A.; Bogdan, A.; Lellouch, J.; Misset, J. L.; Touitou, Y.; Lévi, F., Marked 24-h rest-activity rhythms are associated with better quality of life, better response and longer survival in patients with metastatic colorectal cancer and good performance status, Clinical Cancer Research, 3038-3045 (2000)
[73] Nocedal, J.; Wright, S., Numerical Optimization (1999), Springer: Springer New York · Zbl 0930.65067
[74] Overton, M. L., Large-scale optimization of eigenvalues, SIAM Journal on Optimization, 2, 88-120 (1991) · Zbl 0757.65072
[75] Overton, M. L.; Womersley, R. S., On minimizing the spectral radius of a nonsymmetric matrix function: optimality conditions and duality theory, SIAM Journal on Matrix Analysis and Applications, 9, 473-498 (1988) · Zbl 0684.65062
[76] B. Perthame, Transport Equations in Biology, Frontiers in Mathematics series, Birkhäuser, Boston, 2007.; B. Perthame, Transport Equations in Biology, Frontiers in Mathematics series, Birkhäuser, Boston, 2007. · Zbl 1185.92006
[77] Peters, G. J.; Lankelma, J.; Kok, R. M.; Noordhuis, P.; van Groeningen, C. J.; van der Wilt, C. L., Prolonged retention of high concentrations of 5-fluorouracil in human and murine tumors as compared with plasma, Cancer Chemotherapy and Pharmacology, 31, 269-276 (1993)
[78] Reppert, S. M.; Weaver, D. R., Coordination of circadian timing in mammals, Nature, 418, 935-941 (2002)
[79] Rich, T.; Innominato, P. F.; Boerner, J.; Mormont, M. C.; Iacobelli, S.; Baron, B.; Jasmin, C.; Lévi, F., Elevated serum cytokines correlated with altered behavior, serum cortisol rhythm, and dampened 24-hour rest-activity pattern in patients with metastatic colorectal cancer, Clinical Cancer Research, 11, 1757-1764 (2005)
[80] Sakaue-Sawano, A.; Kurokawa, H.; Morimura, T.; Hanyu, A.; Hama, H.; Osawa, H.; Kashiwagi, S.; Fukami, K.; Miyata, T.; Miyoshi, H.; Imamura, T.; Ogawa, M.; Masai, H.; Miyawaki, A., Visualizing spatiotemporal dynamics of multicellular cell-cycle progression, Cell, 32, 487-498 (2008)
[81] Sakaue-Sawano, A.; Ohtawa, K.; Hama, H.; Kawano, M.; Ogawa, M.; Miyawaki, A., Tracing the silhouette of individual cells in S/G2/M phases with fluorescence, Chemistry & Biology, 15, 1243-1248 (2008)
[82] Schibler, U.; Sassone-Corsi, P., A web of circadian pacemakers, Cell, 111, 919-922 (2002)
[83] Shahreazaei, V.; Swain, P. G., Analytical distributions for stochastic gene expression, Proceedings of the National Academy of Sciences of the United States of America, 105, 17256-17261 (2008)
[84] Sherer, E.; Tocce, E.; Hannemann, R. E.; Rundell, A. E.; Ramkrishna, D., Identification of age-structured models: cell cycle phase transitions, Biotechnology and Bioengineering, 99, 960-974 (2008)
[85] Smaaland, R.; Laerum, O. D.; Lote, K.; Sletvold, O.; Sothern, R. B.; Bjerknes, R., DNA synthesis in human bone marrow is circadian stage dependent, Blood, 77, 2603-2611 (1991)
[86] Staudte, R. G., Planning blocked mitosis experiments for efficient estimation of population-doubling time and cell-cycle time, Biometrics, 38, 777-785 (1982) · Zbl 0513.62112
[87] Vermeulen, K.; Van Bockstaele, D. R.; Berneman, Z. N., The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer, Cell Proliferation, 36, 131-149 (2003)
[88] Vitaterna, M. H.; King, D. P.; Chang, A. M.; Kornhauser, J. M.; Lowrey, P. L.; McDonald, J. D.; Dove, W. F.; Pinto, L. H.; Turek, F. W.; Takahashi, J. S., Mutagenesis and mapping of a mouse gene, clock, essential for circadian behavior, Science, 264, 719-725 (1994)
[89] Vogelstein, B.; Lane, D.; Levine, A. J., Surfing the p53 network, Nature, 408, 307-310 (2000)
[90] Zhang, T.; Brazhnik, P.; Tyson, J. J., Exploring mechanisms of the DNA-damage response: p53 pulses and their possible relevance to apoptosis, Cell Cycle, 85-94 (2007)
[91] X. Zhang, F. Liu, W. Wang, Two-phase dynamics of p53 in the DNA damage response, Proceedings of the National Academy of Sciences of the United States of America, 2011 (Epub ahead of print).; X. Zhang, F. Liu, W. Wang, Two-phase dynamics of p53 in the DNA damage response, Proceedings of the National Academy of Sciences of the United States of America, 2011 (Epub ahead of print).
[92] Zitvogel, L.; Apetoh, L.; Ghiringhelli, F.; Kroemer, G., Immunological aspects of cancer chemotherapy, Nature Reviews: Immunology, 8, 59-73 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.