×

zbMATH — the first resource for mathematics

Checking the adequacy for a distortion errors-in-variables parametric regression model. (English) Zbl 06984123
Summary: This paper studies tools for checking the validity of a parametric regression model, when both response and predictors are unobserved and distorted in a multiplicative fashion by an observed confounding variable. A residual based empirical process test statistic marked by proper functions of the regressors is proposed. We derive asymptotic distribution of the proposed empirical process test statistic: a centered Gaussian process under the null hypothesis and a non-centered one under local alternatives converging to the null hypothesis at parametric rates. We also suggest a bootstrap procedure to calculate critical values. Simulation studies are conducted to demonstrate the performance of the proposed test statistic and real examples are analyzed for illustrations.

MSC:
62 Statistics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Azzalini, A.; Bowman, A., On the use of nonparametric regression for checking linear relationships, J. R. Stat. Soc. Ser. B Stat. Methodol., 55, 2, 549-557, (1993) · Zbl 0800.62222
[2] Carroll, R. J.; Fan, J.; Gijbels, I.; Wand, M. P., Generalized partially linear single-index models, J. Amer. Statist. Assoc., 92, 438, 477-489, (1997) · Zbl 0890.62053
[3] Cui, X.; Guo, W.; Lin, L.; Zhu, L., Covariate-adjusted nonlinear regression, Ann. Statist., 37, 1839-1870, (2009) · Zbl 1168.62035
[4] Dette, H., A consistent test for the functional form of a regression based on a difference of variance estimators, Ann. Statist., 27, 3, 1012-1040, (1999) · Zbl 0957.62036
[5] Fan, J.; Huang, L.-S., Goodness-of-fit tests for parametric regression models, J. Amer. Statist. Assoc., 96, 454, 640-652, (2001), URL: http://dx.doi.org/10.1198/016214501753168316 · Zbl 1017.62014
[6] Fan, J.; Huang, T., Profile likelihood inferences on semiparametric varying-coefficient partially linear models, Bernoulli, 11, 6, 1031-1057, (2005) · Zbl 1098.62077
[7] González-Manteiga, W.; Pérez-González, A., Goodness-of-fit tests for linear regression models with missing response data, Canad. J. Statist., 34, 1, 149-170, (2006) · Zbl 1096.62041
[8] Härdle, W.; Mammen, E., Comparing nonparametric versus parametric regression fits, Ann. Statist., 21, 4, 1926-1947, (1993) · Zbl 0795.62036
[9] Hart, J. D., (Nonparametric Smoothing and Lack-of-fit Tests, Springer Series in Statistics, (1997), Springer-Verlag New York) · Zbl 0886.62043
[10] Kaysen, G. A.; Dubin, J. A.; Müller, H.-G.; Mitch, W. E.; Rosales, L. M.; Levin, Nathan W., Relationships among inflammation nutrition and physiologic mechanisms establishing albumin levels in hemodialysis patients, Kidney Int., 61, 2240-2249, (2002)
[11] Li, F.; Lin, L.; Cui, X., Covariate-adjusted partially linear regression models, Comm. Statist. Theory Methods, 39, 6, 1054-1074, (2010) · Zbl 1284.62422
[12] Lin, D. Y.; Wei, L. J.; Ying, Z., Model-checking techniques based on cumulative residuals, Biometrics, 58, 1, 1-12, (2002) · Zbl 1209.62168
[13] Mack, Y. P.; Silverman, B. W., Weak and strong uniform consistency of kernel regression estimates, Z. Wahrscheinlichkeitstheor. Verwandte Geb., 61, 3, 405-415, (1982) · Zbl 0495.62046
[14] Mammen, E., Bootstrap and wild bootstrap for high-dimensional linear models, Ann. Statist., 21, 1, 255-285, (1993) · Zbl 0771.62032
[15] Nguyen, D. V.; Şentürk, D., Distortion diagnostics for covariate-adjusted regression: graphical techniques based on local linear modeling, J. Data Sci., 5, 471-490, (2007)
[16] Nguyen, D. V.; Şentürk, D., Multicovariate-adjusted regression models, J. Stat. Comput. Simul., 78, 813-827, (2008) · Zbl 1431.62167
[17] Nguyen, D. V.; Şentürk, D.; Carroll, R. J., Covariate-adjusted linear mixed effects model with an application to longitudinal data, J. Nonparametr. Stat., 20, 459-481, (2008) · Zbl 1145.62032
[18] Pollard, D., (Convergence of Stochastic Processes, Springer Series in Statistics, (1984), Springer-Verlag New York) · Zbl 0544.60045
[19] Şentürk, D.; Müller, H.-G., Covariate adjusted correlation analysis via varying coefficient models, Scand. J. Stat., 32, 3, 365-383, (2005) · Zbl 1089.62068
[20] Şentürk, D.; Müller, H.-G., Covariate-adjusted regression, Biometrika, 92, 75-89, (2005) · Zbl 1068.62082
[21] Şentürk, D.; Müller, H.-G., Inference for covariate adjusted regression via varying coefficient models, Ann. Statist., 34, 654-679, (2006) · Zbl 1095.62045
[22] Şentürk, D.; Müller, H.-G., Covariate-adjusted generalized linear models, Biometrika, 96, 357-370, (2009) · Zbl 1163.62053
[23] Şentürk, D.; Nguyen, D. V., Asymptotic properties of covariate-adjusted regression with correlated errors, Statist. Probab. Lett., 79, 1175-1180, (2009) · Zbl 1160.62079
[24] Silverman, B. W., (Density Estimation for Statistics and Data Analysis, Monographs on Statistics and Applied Probability, (1986), Chapman & Hall London) · Zbl 0617.62042
[25] Stute, W.; González Manteiga, W.; Presedo Quindimil, M., Bootstrap approximations in model checks for regression, J. Amer. Statist. Assoc., 93, 441, 141-149, (1998) · Zbl 0902.62027
[26] Stute, W.; Thies, S.; Zhu, L.-X., Model checks for regression: an innovation process approach, Ann. Statist., 26, 1916-1934, (1998) · Zbl 0930.62044
[27] Stute, W.; Xu, W. L.; Zhu, L. X., Model diagnosis for parametric regression in high-dimensional spaces, Biometrika, 95, 2, 451-467, (2008) · Zbl 1437.62614
[28] White, H., Consequences and detection of misspecified nonlinear regression models, J. Amer. Statist. Assoc., 76, 374, 419-433, (1981) · Zbl 0467.62058
[29] Zhang, J.; Feng, Z.; Zhou, B., A revisit to correlation analysis for distortion measurement error data, J. Multivariate Anal., 124, 116-129, (2014) · Zbl 1278.62065
[30] Zhang, J.; Gai, Y.; Wu, P., Estimation in linear regression models with measurement errors subject to single-indexed distortion, Comput. Statist. Data Anal., 59, 103-120, (2013)
[31] Zhang, J.; Wang, X.; Yu, Y.; Gai, Y., Estimation and variable selection in partial linear single index models with error-prone linear covariates, Statistics, 48, 5, 1048-1070, (2014) · Zbl 1367.62131
[32] Zhang, J.; Yu, Y.; Zhou, B.; Liang, H., Nonlinear measurement errors models subject to additive distortion, J. Statist. Plann. Inference, (2014)
[33] Zhang, J.; Yu, Y.; Zhu, L.; Liang, H., Partial linear single index models with distortion measurement errors, Ann. Inst. Statist. Math., 65, 237-267, (2013) · Zbl 1440.62141
[34] Zhang, J.; Zhu, L.; Liang, H., Nonlinear models with measurement errors subject to single-indexed distortion, J. Multivariate Anal., 112, 1-23, (2012) · Zbl 1274.62304
[35] Zhang, J.; Zhu, L.; Zhu, L., On a dimension reduction regression with covariate adjustment, J. Multivariate Anal., 104, 39-55, (2012) · Zbl 1231.62076
[36] Zhou, Y.; Liang, H., Statistical inference for semiparametric varying-coefficient partially linear models with error-prone linear covariates, Ann. Statist., 37, 427-458, (2009) · Zbl 1156.62036
[37] Zhu, L.-X.; Ng, K. W., Checking the adequacy of a partial linear model, Statist. Sinica, 13, 3, 763-781, (2003) · Zbl 1028.62032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.