×

zbMATH — the first resource for mathematics

Model checks for functional linear regression models based on projected empirical processes. (English) Zbl 07160709
Summary: The goodness-of-fit testing for functional linear regression models with functional responses is studied. A residual-marked empirical process-based test is proposed. The test is projection-based, which can well circumvent the curse of dimensionality. The test is omnibus against any global alternative hypothesis as it integrates over all projection directions in the unit ball. The weak convergence of the test statistic under the null hypothesis is derived and it is shown that the proposed test can detect the local alternative hypotheses distinct from the null hypothesis at the fastest possible rate of order \(O(n^{-1/2})\). To reduce computational burden for critical value determination, a nonparametric Monte Carlo method is used, and simulation studies show the good performance of the proposed method in various scenarios. An ergonomics data set is analyzed for illustration.
MSC:
62 Statistics
Software:
rp.flm.test
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chen, X. R.; Li, H. Q.; Liang, H.; Lin, H. Z., Functional response regression analysis, J. Multivariate Anal., 169, 218-233 (2019) · Zbl 1416.62322
[2] Chiou, J. M.; Müller, H. G., Diagnostics for functional regression via residual processes, Comput. Statist. Data Anal., 51, 10, 4849-4863 (2007) · Zbl 1162.62394
[3] Chiou, J. M.; Müller, H. G.; Wang, J. L., Functional response models, Statist. Sinica, 14, 3, 675-693 (2004) · Zbl 1073.62098
[4] Chiou, J. M.; Müller, H. G.; Wang, J. L.; Carey, J. R., A functional multiplicative effects model for longitudinal data, with application to reproductive histories of female medflies, Statist. Sinica, 13, 4, 1119-1133 (2003) · Zbl 1034.62097
[5] Cook, R. D., (Regression Graphics: Ideas for Studying Regressions through Graphics. Regression Graphics: Ideas for Studying Regressions through Graphics, Wiley Series in Probability and Statistics: Probability and Statistics (1998), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York), xviii+349 · Zbl 0903.62001
[6] Cuesta-Albertos, J. A.; García-Portugués, E.; Febrero-Bande, M.; González-Manteiga, W., Goodness-of-fit tests for the functional linear model based on randomly projected empirical processes, Ann. Statist., 47, 1, 439-467 (2019) · Zbl 1415.62027
[7] Escanciano, J. C., A consistent diagnostic test for regression models using projections, Econom. Theory, 22, 6, 1030-1051 (2006) · Zbl 1170.62318
[8] Faraway, J. J., Regression analysis for a functional response, Technometrics, 39, 3, 254-261 (1997) · Zbl 0891.62027
[9] Ferré, L.; Yao, A. F., Functional sliced inverse regression analysis, Statistics, 37, 6, 475-488 (2003) · Zbl 1032.62052
[10] García-Portugués, E.; González-Manteiga, W.; Febrero-Bande, M., A goodness-of-fit test for the functional linear model with scalar response, J. Comput. Graph. Statist., 23, 3, 761-778 (2014)
[11] Guo, X.; Wang, T.; Zhu, L. X., Model checking for parametric single-index models: a dimension reduction model-adaptive approach, J. R. Stat. Soc. Ser. B Stat. Methodol., 78, 5, 1013-1035 (2016) · Zbl 1414.62131
[12] Guo, X.; Zhu, L. X., A review on dimension-reduction based tests for regressions, (From Statistics To Mathematical Finance (2017), Springer: Springer Cham), 105-125 · Zbl 1383.62130
[13] Härdle, W.; Mammen, E., Comparing nonparametric versus parametric regression fits, Ann. Statist., 21, 4, 1926-1947 (1993) · Zbl 0795.62036
[14] Kokoszka, P.; Maslova, I.; Sojka, J.; Zhu, L., Testing for lack of dependence in the functional linear model, Canad. J. Statist., 36, 2, 207-222 (2008) · Zbl 1144.62316
[15] Lavergne, P.; Patilea, V., Breaking the curse of dimensionality in nonparametric testing, J. Econometrics, 143, 1, 103-122 (2008) · Zbl 1418.62199
[16] Li, K. C., Sliced inverse regression for dimension reduction, J. Amer. Statist. Assoc., 86, 414, 316-342 (1991), With discussion and a rejoinder by the author · Zbl 0742.62044
[17] Li, Y. H.; Hsing, T. L., Deciding the dimension of effective dimension reduction space for functional and high-dimensional data, Ann. Statist., 38, 5, 3028-3062 (2010) · Zbl 1200.62115
[18] Li, J. L.; Huang, C.; Zhu, H. T., A functional varying-coefficient single-index model for functional response data, J. Amer. Statist. Assoc., 112, 519, 1169-1181 (2017)
[19] Li, B.; Song, J., Nonlinear sufficient dimension reduction for functional data, Ann. Statist., 45, 3, 1059-1095 (2017) · Zbl 1371.62003
[20] Li, Y.; Wang, N.; Carroll, R. J., Generalized functional linear models with semiparametric single-index interactions, J. Amer. Statist. Assoc., 105, 490, 621-633 (2010) · Zbl 1392.62095
[21] Luo, X. C.; Zhu, L. X.; Zhu, H. T., Single-index varying coefficient model for functional responses, Biometrics, 72, 4, 1275-1284 (2016) · Zbl 1390.62291
[22] Niu, C. Z.; Zhu, L. X., A robust adaptive-to-model enhancement test for parametric single-index models, Ann. Inst. Statist. Math., 70, 5, 1013-1045 (2018) · Zbl 1407.62064
[23] Patilea, V.; Sánchez-Sellero, C.; Saumard, M., Testing the predictor effect on a functional response, J. Amer. Statist. Assoc., 111, 516, 1684-1695 (2016)
[24] Shen, Q.; Faraway, J., An \(F\) test for linear models with functional responses, Statist. Sinica, 14, 4, 1239-1257 (2004) · Zbl 1060.62075
[25] Shen, Q.; Xu, H. Q., Diagnostics for linear models with functional responses, Technometrics, 49, 1, 26-33 (2007)
[26] Silverman, B. W., (Density Estimation for Statistics and Data Analysis. Density Estimation for Statistics and Data Analysis, Monographs on Statistics and Applied Probability (1986), Chapman & Hall, London), x+175 · Zbl 0617.62042
[27] Stute, W., Nonparametric model checks for regression, Ann. Statist., 25, 2, 613-641 (1997) · Zbl 0926.62035
[28] Stute, W.; Thies, S.; Zhu, L. X., Model checks for regression: an innovation process approach, Ann. Statist., 26, 5, 1916-1934 (1998) · Zbl 0930.62044
[29] Tan, F. L.; Zhu, X. H.; Zhu, L. X., A projection-based adaptive-to-model test for regressions, Statist. Sinica, 28, 1, 157-188 (2018) · Zbl 1382.62039
[30] Wang, J. L.; Chiou, J. M.; Müller, H. G., Functional data analysis, Annu. Rev. Stat. Appl., 3, 257-295 (2016)
[31] Wang, H.; Zhong, P.-S.; Cui, Y.; Li, Y., Unified empirical likelihood ratio tests for functional concurrent linear models and the phase transition from sparse to dense functional data, J. R. Stat. Soc. Ser. B Stat. Methodol., 80, 2, 343-364 (2018) · Zbl 1384.62252
[32] Xia, Y. C., Model checking in regression via dimension reduction, Biometrika, 96, 1, 133-148 (2009) · Zbl 1162.62036
[33] Zhang, J. T., Statistical inferences for linear models with functional responses, Statist. Sinica, 21, 3, 1431-1451 (2011) · Zbl 1236.62081
[34] Zhang, J. T.; Chen, J. W., Statistical inferences for functional data, Ann. Statist., 35, 3, 1052-1079 (2007) · Zbl 1129.62029
[35] Zheng, J. X., A consistent test of functional form via nonparametric estimation techniques, J. Econometrics, 75, 2, 263-289 (1996) · Zbl 0865.62030
[36] Zhu, L. X., (Nonparametric Monte Carlo Tests and Their Applications. Nonparametric Monte Carlo Tests and Their Applications, Lecture Notes in Statistics, vol. 182 (2005), Springer, New York), xii+181 · Zbl 1094.62058
[37] Zhu, L. X.; An, H. Z., A method for testing nonlinearity in regression models, J. Math. (Wuhan), 12, 4, 391-397 (1992) · Zbl 0786.62067
[38] Zhu, X. H.; Chen, F.; Guo, X.; Zhu, L. X., Heteroscedasticity testing for regression models: a dimension reduction-based model adaptive approach, Comput. Statist. Data Anal., 103, 263-283 (2016) · Zbl 06918228
[39] Zhu, X. H.; Guo, X.; Zhu, L. X., An adaptive-to-model test for partially parametric single-index models, Stat. Comput., 27, 5, 1193-1204 (2017) · Zbl 06737706
[40] Zhu, L. X.; Li, R. Z., Dimension-reduction type test for linearity of a stochastic regression model, Acta Math. Appl. Sin. (English Serries), 14, 2, 165-175 (1998) · Zbl 0927.62044
[41] Zhu, H. T.; Li, R. Z.; Kong, L. L., Multivariate varying coefficient model for functional responses, Ann. Statist., 40, 5, 2634-2666 (2012) · Zbl 1373.62169
[42] Zhu, L. P.; Wang, T.; Zhu, L. X.; Ferré, L., Sufficient dimension reduction through discretization-expectation estimation, Biometrika, 97, 2, 295-304 (2010) · Zbl 1205.62048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.